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Campbell and Fiske's (1959) multitrait-multimethod (MTMM) design is the most widely used paradigm for testing

construct validity, but it continues to be plagued by problems associated with defmitions of terms, operationalizations

ef their guidelines, and analytic procedures used to test them. Using five diverse MTMM data sets, we demonstrate,

compare and contrast, and evaluate five cunent analytic approaches: two manifest variable a.,proaches (Campbell

and Fiske's (1959) original guidelines and the ANOVA model) and three latent variables approaches (a taxonomy of

confirmatory factor analysis (CFA) models, the covariance component analysis (CCA) model, and the composite

direct product (CDP) model). Even though the five approaches use a common terminology -- convergent validity,

discriminant validity, and method effects -- there is a "fuzziness" about what these concepts mean an' how they are

operationalized in the different approaches. Based on our review and analysis we recommend a common terminology

and operationalization of terms based on CFA models, and recommend the use of four CFA models and the CDP

model along with the original Campbell-Fiske guidelines. The strongest single model, however, appears to be the

CFA correlated uniqueness model.
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Campbell and Fiske (1959) advocated the assessment of construct validity by measuring multiple traits (T1,

T2, Tt) with multiple methods (M1, M2, Mm). Traits refer to attributes such as abilities, attitudes, and

personality characteristics. In many applications, the multiple traits represent a multidimensional construct (e.g., self-

concept) in which there are likely to be moderate to large correlations among the different traits and it may be

reasonable to predict a priori the pattern of relations among the different constructs. In some applications, however,

Lie multiple traits are conceptually unrelated (e.g., attitudes towaris smoking and r ishment) so that it may

be difficult to predict the pattern or correlations among traits.. The term multiple mem i:,. was used very broadly by

Campbell and Fiske (also see Fiske, 1982) to refer to multiple tests, multiple methods of assessment, multiple raters,

or multiple occasions. The MTMM design is frequently used to study multiple battery data in which the same

measures are presented on multiple occasions to study stability, or across different raters to study rater agreement

(Browne, 1934; Cudeck, 1988; Marsh, 1989; Wothke & Browne, 1990). Whereas the analytic procedures for

evaluating MTMM data are appropriate for different types of multiple mearaes, the substantive interpretations differ

depending on the nature of the multiple methods. It is also evilent that the extent of suppo t for the construct validity

of responses associated with any particular trait or method will depend in part on the other tr, its and methods that are

included in the design.

In evaluating multitrait-multimethod (MTMM) data it is typical to refer to convergent validity, discriminant

validity, and method effects (Campbell & Fiske, 1959, Marsh, 1988). Convergent validity refers to true score or

common factor trait variance. In the Campbell-Fiske approach it is inferred from agreement between measures of the

same trait assessed by different methods -- the convergent validities. Discriminant validity refers to the

distinctiveness of the different traits. In the Campbell-Fiske approach it is inferred by comparing correlations among

different traits to the reliabilities of the traits and to convergent validities. Method effects refers to the influence of a

particular method and is typically viewed as an undesirable bias that inflates the correlations among the different

traits that are measured by the same method (but also see Campbell & O'Connell, 1982). In the Campbell-Fiske

approach it is inferred by comparing correlations among traits measured by the same method with correlations among

the same traits measwed by different methods.

The Campbell-Fiske MTMM paradigm is, perhaps, the most widely employed construct validation design,

and their original guidelines remain the most frequently used approach for examining MTMM data. However,

important problems with their guidelines are well known (e.g., Althauser & Heberlein, 1970; Alwin, 1974; Campbell

& (YConnell, 1967; Marsh, 1988; 1989; Wothke, 1984, 1987) and have led to many alternative analytic approaches.

Kenny and Kashy (in press) noted that even after 30 years of widespead use, we still do not know how to analyze

adequately data resulting from the MTMM paradigm. Early attention was received by an ANOVA model proposed

by Stanley (1961; also see Kavanagh, Mackinney & Wollins, 1971; Marsh, 1988; Marsh & Hocevar, 1983).

Subsequently, considerable attention was given to confirmatory factor analysis (CM) approaches (Joreskog, 1974;

Widaman, 1985; Marsh, 1988; 1989). However, researchers have pointed to what appears to be an inherent :nstability

in the general CFA model due, perhaps, to empirical underidentification, such that this model usually results in

improper solutiors. Partly in response to this problem, researchers have demonstrated the use of different approaches

that are more likely to result in proper soluCons: a different CFA model called the correlated uniqueness model

(Marsh, 1988; 1989; also see Kenny, 1976; Kenny & Kashy, in press; also see Browne, 1980); a covariance

component analysis (CCA; Wothk 1984, 1987; also see Browne, 1989; Kenny & Kashy, in press); and the

cnmposite direct product model (CDP; Browne, 1984; 1989; also see Cudeck, 1988; Bagozzi & Yi, 1990; Wothke &
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Browne, 1990). Whereas each of the approaches has potential strengths weaknesses, there has been insufficient

attention given to comparing the different analytic strategies.

The purpose of this study is to demonstrate, compare and contrast, and evaluate five approaches to

evaluating MTMM data. Two of the approaches are based on relations among manifest variables; Campbell and

Fiske's (1959) original guidelines and an ANOVA model proposed by Stanley (1961). The remaining three

approaches are based on relations among latent variables -- a taxonomy of confirmatory factor analysis (CFA) models

(Widaman, 1985; Marsh, 1989), Wothke's (1984, 1987) covariance component analysis (CCA) model, and Browne's

(1984, 1989) composite direct product (CDP) model. It must be emphasized that the five approaches are not

equivalent in their operationalizations of the terms convergent validity, discriminant validity, and method effects.

Consequently, different approaches will sometimes result in incompatible interpretations. Also, each approach has

different strengths and weaknesses that may be idiosyncratic to particular applications. In this respect, it is important

to evaluate the different approaches using h wide variety of MTMM studies.

Surprisingly, no previously published research has compared results from the five approaches considered

here, or even the three latent variable approaches that are our primary emphasis. Furthermore, the correlated

uniqueness model, which we argue is the strongest model in the CFA taxonomy, has not been systematically

compared with either the CCA or the CDP approach. To remedy this situation, we apply all five approaches to a set

of five MTMM studies specifically selected to represent a variety of different MTMM designs and outcomes. This

breadth of application is important because most previous research has compared one or, in a very few cases, two, of

the latent variable approaches with the traditional Campbell-Fiske guidelines for a single set of data. Ours is

apparently the first to apply such wide variety of approaches to such a diversity of MTMM studies. After briefly

describing the five MTMM matrices, we apply the manifest variable approaches, describe hie three latent variable

approaches, and compare results based on the Latent variable approaches.

A Description of Five KTMM Matrices

For purposes of the present investigation, we have chosen 5 MTMM matrices (see Appendix 1) that

represent a variety of different MTMM designs and patterns of results. Because these matrices are based on

previously published data in which the methodological details are presented in greiter detail, we offer only brief

summaries here.

j3yme Data, Byrne and Shavelson (1986; also see Marsh, 1988; 1989; Marsh, Byrne & Shavelson, 1988)

examined the relations between three academic self-concept traits (Math, Verbal, and General School) measured by

three different instruments. The 9 scores representing all combinations of the 3 traits and 3 methods were based on

multi-item scales and the three instruments had strong psychometric properties. Consistent with theory and

considerable prior research, it was found that the Math and Verbal self-concepts were nearly uncormlated with each

other and were substantially correlated with School self-concept. Marsh (1989) noted that this "is an exemplary

MTMM study because of the clear support for the Campbell-Fiske guidelines, the large sample size (817, after

deleting persons with missing data), the good psychometric properties of the measures, and the a priori knowledge of

the trait factor structure" (p. 348). Also, the predicted lack of correlation between Math and Verbal self-concept

satisfies the Campbell and Fiske recommendation to include two traits "which are postulated to be independent of

each other" (p. 104). In the 3Tx3M design, apparendy comparable traits were inferred from responses te different

instruments completed by the same individuals.

Kelly and Fiske D. This MTMM matrix is one of those originally considered by Campbell and Fiske

(1959). Kelly and Fiske (1951) examined relations among ratings of 124 first-year clinical psychology students by

.4
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the students themselves, by the median response from a set of thwe other students, and by the pooled ratings of the

assessment staff. The multiple traits were "behaviors that can be observed directly on the surface" (Campbell &

Fiske, 1959). For purposes of illustration, Campbell and Fiske selected fivf.. traits that best represented underlying

factors found in separate analyses of ratings by each group (assertive, cheegul, serious, unshakable poise, and broad

interests). Campbell and Fiske (1959), noting a lack of support for their guidelines in most MTMM studies,

concluded that this A.ITMM matrix "is, we believe, typical of the best validity in personality trait ratings that

psychology has to offer at the present time." This matrix was also the basis of Joreskog's original (1974) presentation

of the CFA approach, although the general model that he proposed actually resulted in an improper soh tion. Browne

(1984) demonstrated his CDP model with this matrix and claimed that it was superior to the CFA approach. Wothke

(1984, 1987) demonstrated his CDP model with this matrix, also claiming its superiority over the CFA approach.

However, the CFA correlated uniqueness model was not considered in either of these studies, so the claimed

superiority of either the CCA or CDP approach over the CFA approach for this data may be premature. In the 5Tx3M

design, apparently comparable traits were inferred from responses to different stimulus materials by different

indiv: als who have different roles.

Imianaata, Marsh and Ireland (1984, 1988) asked multiple teachers to evaluate 139 student essays

according to different components oe writing effectiveness. In this application, responses by three teachers constitute

the multiple methods of assessing 5 traits (mechanics, sentence structure, word usage, organization, contentfideas,

quality of style). Marsh and Ireland fougd good support for agreement among different teachers (and between teacher

ratings and school based measures) for the total scores. Consistent with previous research, however, they found little

or no support for the ability of teachers to differentiate among the multiple traits. This MTMM matrix, then,

represents a multiple battery design (the same stimulus material was used for multiple raters) in which there is

apparently good support for convergent validity, but not discriminant validity. Marsh (1989) also demonstrated the

CFA correlated uniqueness model with this data, arguing for its superiority to the general CFA model that resulted in

an improper solution. In the 5Tx3M design, apparently comparable traits were inferred from responses to the same

stimulus materials by different individuals who have the same role.

YouthiolLangligaalliDaia, Data for this matrix come from the YIT study (Bachman, 1975) in which a

large, nationally representative sample of high school males were sampled in 10th, 11th, and 12th grades and one

year after graduation from high school. For this data, the multiple occasio.is are considered to be the different

methods of assessment. Marsh and Bailey (1991) found strong support for convergent and discriminant validity, and

weak method (occasion) effects for a large number of variables from this data. For present purposes we consider five

traits (self-esteem, political knowledge, honesty, job ambition, and anxiety) measured on three different occasions.

This MTMM matrix, then, represents multiple battery data (same measures on different occasions) in which there is

good support for both convergent and discriminant validity. In the 5Tx3M design, apparently comparable traits were

inferred from responses to the same stimulus materials by the same individuals on different occasions.

Layyja jaki, Lawler (1969) considered ratings of three job performance traits (quality of job performance,

ability to perform job, and effort put into the job). The multiple methods were self-ratings, ratings by supervisors, and

ratings by peers. This matrix, along with the one based on the Kelly and Fiske data, has apparently been the most

frequently reanalyzed MTMM matrix, but the results have not been clear-cut. There is moderate agreement between

peers and supervisors, but also substantial correlations among the different traits. Self-ratings of effort are moderately

correlated with those of peers and supervisors, but self-ratings on the other two traifs are nearly uncorrelated with the

peer and supervisor ratings. This 3Tx3M matrix, then represents typically "messy" elata. In the 3Tx3M design,
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apparendy comparable traits were inferred from responses to the same stimulus materials by different individuals

who have different roles.

In summary, we selected MTMM matrices that vary substantially in design and in terms of apparent support

for convergent validity, discriminant validity, and method effects.

31LCamazIl.andliskt112521Apprach

The MTMM matrix based on the Byrne data (Appendix 1) is used to illustrate the MTMM terminology that

is embodied in the Campbell-Fiske approach. There are three traits, School self-concept (T1), Verbal self-concept

(r2) and Math self-concept (T3), and three methods -- thi e different self-concept instruments (M1, M2, M3). The

MTMM matrix contains correlations among these M x 1' = 9 measures. The measured variables are typically onlered

in terms of traits within method (e.g., T1M1,12M1, T3M1, T1M2, T3M3). The MTMM matrix is divided into

triangular submatrices of relations among measures assessed with the same method (monomethod), and square

submatrices of relations among vasures assessed with different methods (heteromethod). Adopting the Campbell and

Fiske terminology, there are four tyi. of coefficients: (a) monotrait-monomethod coefficients or reliability zstimates,

the values in parentheses along the main diagonal of the MTMM matrix or 1.0s if no reliability estimates are available;

(b) heterotrait-monomethod (HTMM; different traits, same method) coefficients, the off-diagonal coefficients of the

triangular submatrices; (c) monotrait-heteromethod (MTHM; same traits, different method) coefficients or convergent

validities, the values in the diagonals of the square submatrices; and (d) heterouait-heteromethod (HTHM; different

traits, different method:2) coefficients, the off-diagonal coefficients of the square submatrices.

Campbell and Fiske (1959) proposed four guidelines for evaluating MTMM matrices and inferring support

or nonsupport for convergent and discriminant validity, although they actually suggested other possible guidelines.

The application of the guidelines is presented in detail for the Byrne data, whereas the applicadon to the other

MTMM matrices (see Appendix 1) is summarized in Table 1.

For purposes of explanation, manifest score are denoted x(Ti, Mp) where Ti is one of the multiple traits (Ti,

Tj, Tk...) and Mp is one of the multiple methods (Mp, Mq, Mr...). Let r(TiMp, TjMs) denote the correlation between

x(Ti, Mp) and x(Tj, Ms).

Convergent validity criterion

1) r (TiMp, TiMs) » 0

The convergent validity coefficients should be statistically significant and sufficiently large to warrant further

examination of validity. Failure of this criterion sugpests that different measures are measuring different constructs,

implying a lack of validity for at least some of the measures, or that true trait variaace is small relative to the size oi

method effects and measurement error. Although positive convergent validity coefficients may also reflect shared

method effects, satisfaction of this guideline is a logical prerequisite to the consideration of other guidelines. RN the

Byrne data all nine convergent validities are statistically significant, varying between .54 and .87 (mean r = .70), thus

providing strong support for this guideline.

Piscriminant validity guidelines

2) r (TiMp, > r (TjMp, Tiivfq) and r (TiMp, TiMq) > r (TjMq, TiMp), p not equal p

The convergent validities should be higher than HTHM correlations. The failure of this criterion implies that

agreement on a particular trait is not independent of agreement on other traits, suggesting that agreement can be

explained by true trait correlations or shared method effects. For T=3 and M=3 this criterion requires each convergent

volidity to be higher than the 4 HTHM coefficients in the same row and column of the square submatrix. Because
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convergent validities (mean r = .70) are higher than the comparison correlations (mean r = .31) in all 36 of these

comparisons, there is good support for this guideline of discriminant validity for the Byrne data.

3) r (TiMp, TiMq) > r (TiMp, TjMp) and r (TiMp, TiMq) > r (TiMq, TjMq)

The convergent validities should be higher than HTMM correlations. Violations of this criterion suggest that there are

true trait correlations and/or method effects. Particularly if HTNIM correlations approach the reliability estimates

then there is evidence that the traits are not measuring different constructs and/or a strong method effect. This

criterion requires each convergent validity to be higher than the 4 HTMM comparison coefficients in the same row

and column of the corresponding triangular submatrices. Because the convergent validities (mean r = .70) are higher

than the comparison correlations (mean r = .35) for 33 of 3f comparisons, there is reasonable support for this

criterion in the Byrne data. All three failures involve M3 where correlations among the traits (mean r = .44) are

higher than for MI (.28) or M2 (.33).

4) r (TiMp, TjMq) > r (TkMp, TlMq) implies r (TiMr, TjMs) > r (TkMr, TIMs).

The pattern of correlations among traits should be similar for the same and different methods. Assuming that there

are significant correlations, satisfaction of this criterion suggests true trait correlations that are independent of the

method of assessment whereas failure suggests that the observed correlations are differentially affected by method

effects. When the number of traits is small this criterion is typically examined by inspection of the rank order of

correlations (e.g., Sullivan and Feldman, 1979), but Marsh (1982) correlated the correlations to obtain a more precise

index of similarity when the number of traits was large. The relative size of correlations within each method

correlated between .66 and .67 with the corresponding correlations within the other methods. All correlations

between Math and Verbal self-concepts are small (mean r = .06) whereas school self-concept is significantly and

consistently correlated with both Math (mean r = .45) and Verbal (mean r = .42) self-concepts. These results,

particularly since they support a priori hypotheses about the pattern of correlations, provide clear support for this

guideline in the Byrne data.

5) r (TiMp, TjMp)/ [(r (TiMp, TiMp) r(TjMp, TjMp)] 112 « 1

Campbell and Fiske (1959) specifically stated that a clear violation of discriminant validity occurred "where within a

monomethod block, the heterotrait values are as high as the reliabilities" (p. 84) and that "the elevation of the

reliabilities above the heterotrait-monomethod triangle is further evidence for discriminant validity" (p. 97). Although

not formally included as one of their guidelines, it is clear that this was part of their strategy for evaluating MTMM

matrices. In retrospect, its exclusion from their "official" list of guidelines is unfortunate, because it would have

encouraged researchers to systematically evaluate the reliability of their measures, to focus more on the quality of

measurement of each trait-method unit, to evaluate the Implicit assumption of equally reliable measures underlying

all the guidelines, and to include this as part of the MTMM matrix. We realize that this guideline cannot be evaluated

in most existing MTMM studies because reliability estimates typically are not reported, but have presented it as one

of the Campbell-Fiske guidelines to encourage its consideration in future research. For the Byrne data the coefficient

alpha estimates of reliability (.79 to .95; mean = .89) are all substantial, and none of the disattenuated correlations

approaches 1.0, providing good support for this guideline.

Wilk() effects

6) r (TiMp, TjMp) > r (TiMp, TjMq)

Campbell and Fiske (1959, p. 85) stated that "the presence of method variance is indicated by the difference in level

of correlation between parallel values of the monomethod block and the heteromethod block, assuming comparable

ieliabilities among the tests." Large differences imply substantial method effects and/or shared method effects.

1+4
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Althoug n not formally included as one of their guidelines, Marsh (1988; also see Millsap, 1990) noted that this was

an imptrtant aspect of their approach and proposed its addition to the set of guidelines. In operationalizing this

criterion for the Byrne data, for example, the mean HTMM correlation is .35 whereas the mean HTHM correlation is

.29, suggesting a small amount of method effect. The correlations among traits, however, are larger for M3 (mean r =

.44), than for M2 (mean r = .33) and MI (mean r = .28). This suggests modest amounts of method effxt for M3, but

little or no method effects for MI and M2.

Insert Table 1 About Here

The application of the Campbell-Fiske guidelines (except for guideline 5 that requires reliability estimates

that are typically unavailable) for the other four data sets is summarized in Table 1. The convergent validities are

consistently large in the YIT (mean r = .52) and Ireland (mean r = .62) data, but less so in the Kelly and Fiske (mean r

= .36) and Lawler (mean : = .28) uata sets. Guidelines 2 and 3 are satisfied for most comparisons for the YIT and for

the Kelly and Fiske data, but not for the Lawler or the Ireland data. The patterns of correlations among traits is

reasonably similar across methods in all 4 data sets. Method effects, based on the comparison of HTMM and HTHM

correlations, appear to be substantial for the Lawler and Ireland data, but not for the Kelly and Fiske and the YIT

data. In summary, the Campbell-Fiske guidelines appear to be well satisfied for the Byrne, YIT, and, to a lesser

extent, for the Kelly-Fiske data. There is good support for only convergent validity for the Ireland data and even the

support for convergent validity is weak for the Lawler data.

Problems With the Campbell Fiske Guidelines

The Campbell-Fiske guidelines continue to be widely used and are useful in many instances. Because of

their popularity, ease of application, intuitive appeal, heuristic value, and wide recognition, it is recommended that

these guidelines should be applied as an initial step in MTMM studies even though more sophisticated approaches

should also be used. If inferences based on the Campbell-Fiske guidelines do not agree with those based on other

analytic approaches, then the appropriateness of both approaches should be more fully examined. This requires

researchers to better understand the different approaches. The following issues represent important limitations to the

Campbell-Fiske guidelines, some of which are addressed by other approaches.

The number of comparisons. For the 3Tx3M design, guidelines 2 and 3 required a total of 72 comparisons

between convergent validities and other correlations. However, these comparisons are not tests of statistical

significance and appropriate significance tests would be difficult to devise for so many nonindependent comparisons.

Furthermore, the number of comparisons goes up geometrically with the number of traits and methods. For example,

3164 comparisons are required for a I2Tx4M design (Marsh, Barnes & Hocevar, 1985). The researcher must then

deckle whether the proportion of failures is sufficiently low, whether mean difference between convergent validities

and comparison coefficients is sufficiently large, or whether size and pattern of violations are sufficiently

unsystematic to warrant sirtport of a criterion. This decision is somewhat arbitrary.

Correlated traits and discriminant validity. Support for discriminant validity should, apparently, be based on

the size of true trait correlations. If, for example, true trait correlations approach 1.0 or exceed some arbitrary value,

then the trails could be said to lack of discriminate validity. Campbell and Fiske distinguish between method

variance, tme trait variance, and true trait covariance. Method variance associated with a particular method of

assessment is detrimental to discriminant validity in the Campbell-Fiske guidelines, but does not preclude it. True

trait variance, inferred from the correlation between different measures of the same trait that is independent of

method variance, is good but does not imply uiscriminant validity. True trait covariation, the true correlation between
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different traits that is independent of method effects, will increase the likelihood of failures of guidelines 2 and 3.

However, criterion 4 specifically tests for true trait covariation and is interpreted as support for discriminant validity.

A complete lack of true trait covariation or trait correlations approaching the reliability of the measures makes

interpretation simple, but is unlikely. Hence, true trait correlations and their interpretation in relation to discriminrn

validity is ambiguous within the Campbell-Fiske approach.

Inferences based on observed correlations and errorful data. The validity of inferences based on the

Campbell-Fiske guidelines depends on the behavior of the underlying constructs, but the Campbell-Fiske guidelines

are applied to correlations between observed measures. Campbell and Fske noted that the applicati)n of their

guidelines implicitly assumes the measures to be equally reliable. If the reliabilities differ substantially, then

inferences based on the guidelines may be invalid. For example, correlations among traits assessed with a more

reliable meiirod may produce higher trait correlations than a less reliable method, and thus give the impression of

larger method effect:7. Other researchers have anempted to evaluate what assumptions about underlying cAn.... Arts are

required in order for inferences based on the guidelines to be valid (e.g., Althauser & Heberlein, 1970; Alwin, 1974;

Marsh, 1988; Sullivan and Feldman, 1979). There is, however, neither clear agreement about what conditions

invalidate the inferences nor practical solutions about how to evaluate these inferences.

Large method effects and shared method effects, Whereas the Campbell-Fiske guidelines were designed to

test for convergent and discriminant validity when method effects are likely, the existence of large method effects

and shared method effects may undermine interpretations of the guidelines. Thus, for example, large method effects

will lead to what appears to be a lack of discriminant validity (according to guidelines 2 and 3) even when the

underlying traits are distinct. High convergent validities may also reflect substantial shared method effects in addition

to, or instead of, true trait effects that generaliv across methods. If different method effects are negatively correlated,

a zero convergent validity could reflect the counter-balancing negative shared method effects and positive true trait

variance. Even the fifth criterion used to infer the size of method effects must be interpreted cAutiously when there

are large shared method effects. In the extreme, if all the method effects are large and correlations between method

effects representing different methods approach 1.0, then application of the fifth criterion would imply a lack of

method effects. In this sense, inferences based on the Campbell-Fiske guidelines should be interpreted as evidence

about the trait effects relative to the size of method effects. Whereas large method effects and shared method effects

make it difficult to make inferences about true trait variance and true trait covariance in the Campbell-Fiske

approach, this may not be a crippling problem. From a practical perspective, if the method effects are huge, then the

validity of the interpretations of the relatively tiny trait effects may not be very important.

Trait/method correlations and interaction& Interpretations of the discriminant validity guidelines summarized

above are based on the assumption that traits are uncorrelated with method effects. While this assumption may be

substantively reasonable in some applications, its justification is primarily pragmatic rather than substantive. Without

such an assumption the interpretation of the guidelines is more complicated and apparently more problematic, but the

effect of its violation on the inferences is not well documented (see Althauser & Heberlein, 1970; Wothke, 1984).

Campbell and O'Connell (1967) also proposed that traits and methods may interact. Trait/method interactions are

different from trait/method correlations. Trait/method correlations imply that there is an overlap in the variance that

can be explained by the main effects of traits and methods, whereas trait/method interactions imply that additional

variance can be explained by trait/method crossproducts. Whereas the existence of trait-method correlations further

complicate the interpretation of the Campbell-Fiske guidelines, the existence of trait-method interactions apparently
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undermines the logical basis for the guidelines, the assumption of additivity underlying factor analysis in general, and,

perhaps, even the classical approach to test theory (Campbell & O'Connell, 1967; 1982).

The subsequently popularized factor analysis representation of Ml'MM data was apparently the basis of the

guidelines proposed by Campbell and Fiske (1959) and subsequently described in Campbell and O'Connell (1967,

1982; also see Kenny & Kashy, in press). Campbell and Fiske specifically noted that "each test or task employed ior

measurement purposes is a trait-method unit, a union of a particular trait content with measurement procedures not

specific to that content. The systematic variance among test scores can be due to responses to the measurement

features as well as responses to the trait content" (p. 81). Elsewhere they endorsed Cronbach's (1946, p.47.5)

statement that "the final score ... is a composite of effects resulting from the content of the item and effects resulting

from the form of tne test used." Campbell and O'Connell (1967) subsequently considered hypothetical MTUM

results constructed by varying aspects of latent trait factor loadings, latent method factor loadings, uniqueness, and

the associated variance emponents. Kenny and Kashy (in press) are even more emphatic in making this point,

stating that "this [general CFA] model is particularly attractive in that its structure directly corresponds to Campbell

and Fiske's original conceptualization of the MTMM matrix" (p. 5).

From this perspective, it is important to emphasize that Campbell and Fiske (1959) explicitly or implicitly

noted most of the problems that have been raised in relation to a strict interpretation of their guidelines. Their

guidelines, however, were apparently not intended to be given such a strict interpretation nor to be the rigid,

inflexible criteria that they have come to represent. Instead, Campbell and Fiske viewed the guidelines as "common-

sense desideratum" (p. 83) and suggested that formal statistical anafyser Ps factor analyses "are neither

necessary nor appropriate at this time" (p. 103). They argued that "we believe that a careful examination of a

multitrait-multimethod matrix will indicate to the experimenter what his next steps should be: it will indicate which

methods should be discarded or replaced, which concepts need sharper delineation, and which concepts are poorly

measured because of excessive or confounding method variance" (p. 103). More recently, Fiske (1982) reiterated this

contention, adding that "I continue to believe that direct inspection of each trait-method unit should be carried out in

every instance. With a little Cu:ought and practice, the major interpretations of the matrix will become apparent to the

investigator" (p. 80). Their intent apparently was to provide a systematic approach to the formative evaluation of

MTMM data at the level of the individual trait-method unit, qualified by the recognized limitations of their approach,

not to provide abstract, global summaries of convergent validity, discriminant validity and method effects that are a

definitive summative statement. We argue strongly that this formative orientation in the MTMM paradigm must not

be lost in the development of mathematically more sophisticated approaches to MTMM data -- that the baby should

not be thrown out with the bath water -- and propose that alternative approaches should be evaluated in relation to

this original orientation. More generally, Campbell and Fiske had a heuristic intention to encourage researchers to

consider the concepts of convergent validity, discriminant validity, and method effects; in this intention the were

unquestionably successful.

In summary, the Campbell-Fiske approach provides a heuristic, potentially useful structuro for the formative

evaluation of MTMM data. However, as acknowledged by Campbell and Fiske (1959), there are many potentially

serious problems and ambiguities in the interpretation of their guidelines. The heuristic importance of their work as

well as limitations in their guidelines have led to the development of alternative approaches to the evaluation of

MTMM data that are considered here.

Th.c.ANguysilgusgArmaDaut

4. !I
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MTMM data can be malyzed with a three-factor unreplicated ANOVA and the ANOVA terms can be

computed directly from the MTMM matrix (Kavanagh, MacKinney & Wollins, 1571; Marsh & Hocevar, 1983;

Schmitt & Stubs, 1986). When measures for all levels of traits and methods are obtained for the same subject, three

orthogonal sources of variation can be estimated. The main effect of subjects is a test of whether there are significant

differences between subjects for measures averaged across traits and methods, and is used to infer convergent

validity. The subject x trait interaction tests whether differences between subjects depend on traits, and is used to

infer discriminant validity. If it is nonsignificant then the traits have no differential validity in that subjects are

ranked the same for all traits. The subject x method interaction tests whether differentiation depends on the method of

assessment, and is used to infer method effects. If it is significant then the method effects introduce a systematic

source of what is usually interpreted to be an undesirable variance. The three-way interaction is assumed to reflect

only random error such that differentiation does not depend on specific trait-method combinations. The main effects

due to traits and methods are rarely of substantive interest and are necessarily zero for standardized data. Whereas

there are numinal tests of statistical significance for the effects used to infer convergent validity, discriminant

validity, and method effects, the primary interest is typically in variance components associated with these effects.

The computadon of effects and variance components is described by Kavanagh, MacKinney and Wollins

(1971) and by Marsh and Hocevar (1983), and results for the 5 MTMM matrices are presented in Table 1. According

to this approach, the variance components associated with convergent and discriminant validity ain both substantially

larger than the variance component associated with method effects for the Byrne, the YIT, and the Kelly-Fiske data.

For the Lawler data the effects of convergent validity and method effects are large, but the discriminant validity

effect is small. For the Ireland matrix, the convergent validity effect is very large, the method effect is small, and the

discriminant validity effect is very small.

ErghlopLWAthe ANOVA approach

The advantages of the ANOVA approach are its ease of application and the convenient summary statistics

used to infer convergent, discriminant, and method/halo effects. The ANOVAmodel provides only a global

evaluation of variance components and fails to provide the formative evaluation of specific trait-method units that

was an original intent of the MTMM paradigm.

The effects in ANOVA model bear some resemblance to terms used in the Campbell-Fiske approach, but it

is imporiant to emphasize that they are not directly comparable. In theANOVA approach, for example, convergence

is based on the average correlation in the entire MTMM matrix, whereas in the Campbell-Fiske approach it is based

on just the convergent validities. Thus, for example, the Ireland matrix has a much larger convergent validity effect

than any of the matrices according to the ANOVA approach even though the mean convert alt ialidity is highest in

the Byrne matrix. Also, the Lawler matrix has the third highest (of 5) convergent vOir'4y et itet in the ANOVA

approach, but has the lowest mean convergent validity. In the ANOVA approach, an er '.Nrnely high convergent

validity effect precludes strong support for dscriminant validity, whereas strong convergent validity is a prerequisite

to discriminant validity in the Campbell-Fiske approach. Because of these disjunctures in terminology in the two

approaches, interpretations based on the ANOVA approach shout(' be described carefully so as to not confuse them

with the more prevalent Campbell-Fiske terminology. It is also worth noting that the ANOVA approach is sensitive

to the orientation of the traits. Thus, for example, if all the traits are positively correlated, then reversing the sign of

correlations associated with one particular trait will reduce the average correlatiar among all traits which will reduce

the convergent validity effect and increase the discriminant validity effect.
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The ANOVA model cannot be recommended. Like the original Campbell-Fiske guidelines, the ANOVA

model is based on intemices about measured, errorful data. Important limitations of the ANOVA modes may be

overlooked in the model's apparent but deceptive simplicity and precision. Also, this approach does not lead to the

heuristic interpretations of specific measures, traits, and methods that may b the most important contribution of the

MTMM paradigm as a formative tool. The unfortunate linking of the ANOVA effects to the Campbell-Fiske

terminology is inappropriate. The convergent, discriminant, and methcdfhalo effects in the ANOVA model are not

the same as those inferred from the Campbell-Fiske guidelines even though the two approaches may lead to

apparently consistent conclusions (see Marsh & Hocevar, 1983). The interpretation of the average conflation in the

entire MTMM as support for convergent validity is, apparently, particularly dubious. The sensitivity to trait

orientation also appears to A potential problem. At least some of the inherent weaknesses in the ANOVA model

are overcome in the related CCA model developed by Wothke (1984, 1987) that is described latter. In this sense, the

ANOVA model may have been superseded by Wothke's work.

TheConfinnatopaactor_Analvsioach
MTMM matrices, like other correlation matrices, can be factor analyzed to infer the nrderlying dimensions.

Factors defined by different measures of the same trait suggest trait effects, whereas factors dermed by measures

assessed with the same method suggest method effects. With CFA the researcher can define models that posit a priori

trait and method factors, and test the ability of such models to fit the data. However, critical problems in the CFA

aprroach are the assumptions underlying the proposed models, technical difficulties in the estimation of parameters,

and the validity of inferences based on the parameter estimates (Marsh, 1989).

The CFA approach to MTMM data is the most widely applied alternative to the Campbell-Fiske guidelines. In

the general MTMM model adapted from Joreskog (1974; also see Marsh, 1988; 1989; Wideman, 1985): (a) there are at

least three traits (T=3) and 3 methods (M=3); (b) T x M measured variables are used to infer T + M a priori factors; (c)

each measured variable loads on one trait factor and one method factor but is constrained so as not to load on any other

factors; (d) correlations among trait facters and among method factors are freely estimated, but emulations between

trait and method factors are fixed to be zero; (e) the uniqueness of each scale is freely estimated but assumed to be

uncorrelated with the uniquenesses of other scales. This general model, which we refer to as the CFA model with

correlated intits and correlated methods (CFA-CTCM), is presented (Modellin Fi iL__.re1) for a 4Tx4M design.

Insert Figure 1 About He.e.

An advantage of this general CFA model is the apparently unambiguous interpretation of convergent

validity, discriminant validity, and method effects: large trait factor loadings indicate support for convergent validity,

large method factor loadings indicate the existence of method effeAls, and large trait correlations -- particularly those

approaching 1.0 -- indicate a lack of discriminant validity. Also, in standardized form, the squared trait loading, the

squared method factor loading, and the error component sum to 1.0 and can be interpreted as components of variance

for each item. Again, however, it is important to emphasize that these effects are not the same as the convergent,

discriminant, and method effects inferred from the Campbell-Fiske approach. The most obvious difference is that

inferences are based on latent constructs instead of manifest variables. Also, as noted earlier, large method effects

and correlated method effects can influence interpretations of convergent validity and discriminant validity with the

Campbell-Fiske guidelines. Consistent with Kenny and Kashy's (in press) assertion, our interpretation of Campbell

and Fiske (1959; also see Campbell & O'Connell, 1967; 1982) suggests that their original guidelines were implicitly

based on a latent trait model like the CFA models. From this perspective, the eperationalizations of convergent
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validity, discriminant validity, and method effects in the CFA approach may better reflect Carr:tell and Fiske's

(1959) original intentions than do their own guidelines.

Researchers have proposed many variations to the CFA-CTCM model to examine inferences about Oak or

method variance or to test substantive issues specific to a particular study (e.g., Joreskog, 1974; Marsh, Barnes &

Hocevar, 1985; Marsh, 1989; Widaman, 1985). Widamen proposed a taxonomy of models that systematically; varied

different characteristics of the trait and method factors that was expanded by Marsh (1988, 1989). This taxonomy is

designed to be appropriate for all MTMM studies, to provide a general framework for making inferences about the

effects of trait and method factors, and to objectify the complicated task of forrnlating irodels and representing the

MTMM data. Whereas deuiiied consideration of the taxonomy is beyond the scope of the present investigation (see

Marsh, 1989), four models (Figure 1) are considered that we recommend as the minimum set of models that should

be applied in all CFA MTMM studies.

The trait-only model (CFA -CT; Figure 1) posits trait factors but no method effects whereas the remaining

models posit trait factors in combination with different representations of method effects. Hence, the trait-only model

is nested under the other CFA models so that the comparison of its fit with the other CFA models provides an

indication of the size of methods effects. Implicit in this operationalization of method effects is Joreskog's contention

that "method effects are what is left over after all trait factors have been eliminated" (1971, p. 128; also see Marsh,

1989). The model with correlated trait factors but uncorrelated method factors (CFA-CTUM; Figure 1) differs from

the CFA-CTCM model only in that correlations among the method factors are constrained to be zero. Hence the

comparison of the CFA-CTCM and CFA-CTUM models provides a test of whether method fwtors are correlated.

In the correlated uniqueness model (CFA-CTCU; Figure 1), method effects are inferred from correlated

uniquenesses among measured variables based on the same method instead of method factors (see Marsh, 1989;

Marsh and Bailey, 1991; Kenny, 1979; Kenny & Kashy, in press). Like the CFA-CTUM model the CFA-CTCU model

assumes that effects associated with one method are uncorrelated with those associated with different methods. The

CFA-CTCU models differs from the CFA-CTCM and CFA-CTUM models in that the latter two models implicitly

assume that the method effects associated with 3 given method can be explained by a single latent method factor

(hereafter referred to as the unidimensionality of method effects) whereas the correlated uniqueness model does not.

This important distinction, however, is only testable when there are at least four traits. When there are three traits the

CFA-CTUM and the CFA-CTCU models are equivalent so long as both models result in a proper solution (i.e., the

number of estimated parameters goodness of fit are the same fit, and parameter estimates from one can be transformed

into the other) because correlations among three indicators can be represented by a single latent trait.

The juxtaposition of the CFA-CTUM, CFA-CTCM, and CFA-CTCU models is important. So long as all

three models result in proper solutions, the comparison of CFA-CTUM and CFA-CTCU model tests the

unidimensionality of method effects (i.e., whether the method effects associated with each method form a single

latent methou factor), whereas the comparison of the CFA-CTUM and CFA-CTCM models tests whether effects

associated with different methods are correlated. Because the CFA-CTCU and CFA-CTCM are not nested, their

comparison is more complicated. For example, if both the CFA-CTCM and CFA-CTCU models fit the data

substantially better than the CFA-CTUM, all three models may be wrong: the CFA-CTUM is wrong because it

assumes that the effects associated with each method are unidimensional and unrelated te, :he effects associated with

other method; the CFA-CFCM is wrong because it assumes that the effects associated with each method am

unidimensionel; the CFA-CTCM is wrong because it assumes that the effects associated with each method are

unrelated to the effects associated with other methods
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From a practical perspective, the most important distinction between the CFA-CTCM, CFA-CTUM, and the

CFA-CTCU models is that the CFA-CTCM model typically results in improper solutions, the CFA-CTIJM model

often results in an improper s' ilution, and the CFA-CTCU almost always results in ksoper solutions (Kenny & Kashy,

in press; Marsh, 1989; Marsh & Bailey, 1991; also see Wothke, 1984, 1987). For example, Marsh and Bailey (1991),

using 435 MTMM matrices based on real and simulated data showed that the CFA-CTCM model typically resulted in

improper solutions (77% of the time) whereas the CFA-CTCU model nearly always (98% of the time) resulted in

well-defined solutions. When both solutions were proper, parameter estimates based on the CFA-CTCU model

tended to be more accurate and precise in relation to known parairater values based on simulated data. Even for data

specifically constructed to have correlated method effects as posited in the CFA-CTCM model but not the CFA-

CTCU model, the CFA-CTCU uniqueness model was more likely to converge to a proper solution and provided more

accurate parameter estim%tes even though it was not able to completely able to fit the data, thus indicating that it was

not a "true" model. Ir Iproper solutions for the CFA-CTUM and particularly the CFA-CFCM models were more

likely when the MTMM design was small (i.e., 3Tx3M vs 5Tx5M), when the samplz size was small, and when the

assumption of unidimensional method effects was violated. From this practical perspective, the complications in

comparing the CFA-CTCM, CFA-CTUM, and CFA-CTCU models may be of limited relevance because in many

applications only the CFA-CTCU model results in a proper solution.

Covariance Component Analysis

Wothke (1984, 1987; also see Browne, 1989; Kenny & Kashy, in press) described the covariance component

analysis (CCA) model that is based in part on earlier work by Bock (1960) and Bock and Bargmann (1966) and, in

some ways, resembles the ANOVA approach discussed earlier. The "factors" in the CCA model are not based on

freely estimated factor loadings as in the CFA approach, but are fixed contrast coefficients like those used in ANOVA.

In fact, given the many parallels between the CCA and ANOVA models, it is curious that Wothke (1984, 1987) did

not evaluate this earlier approach and its relation to his CCA model. The key parameter estimates in the CCA model

are the relative size of variance components due to trait contrasts, method contrasts, and ageneral factor. In Wothke's

ieterization of the CCA model, there is one general factor reflecting an average score across all the measures, T-

trait contrast factors, and M-1 method contrast factors. According to the scale free version of the CCA model that is

most appropriate for the analysis of MTh/1M data, the population covariance matrix E can be expressed as:

(1) E= D tif (10 K')D+0

where K is (M x T) x (M + T - 1) matrix of fixed othonormal column contrasts like those used in traditional ANOVA

models, 4) is a (M + T -1) x (M + T - 1) variance-covariance matrix, 0 is a typically diagonal matrix of uniqueness

terms, and D is a diagonal matrix of scaling constraints designed to absorb scaling constants so that the model can be

fit to correlation matrices (Wothke, 1984, 1987).

The K matrix is a fixed set of coefficients constructed in the same way as in contrasts ANOVA. Thus, for

example, for a 3T x 3M design with measured variables x(T1M1), x(T1M2) x(T3,M3), the 9 x 5 K matrix can be

represented by:
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(2) 0.333333

0.333333

0.333333

0.331333

0.333333

0.333333

0.333333

0.333333

0.333333

0.471405

-0.235702

-0.235702

0.471405

-0.235702

-0.235702

0.471405

-0.235702

-0.235702

0

0.408248

-0.408248

0

0.408248

-0.408248

0

0.408248

-0.408248

0.471405

0.471405

0.471405

-0.235702

-0.235702

-0.235702

-0 .35702

-0.235702

-0.235702

0

0

0

0.408248

0.408248

0.408248

-0.408248

-0.408248

-0.408248

where (a) the first column of 9 coefficients reflects the general factor; it is like the "mean" contrast in a typical

ANOVA; (b) the next two columns are the T-1 trait contrasts such that the fffst trait contrast represents the difference

between T1 and the average of T2 and T3 and the second trait contrast reflects the different between T2 and T3

(averaged over methods); these are like the ANOVA contrasts used to reflect the T-1 degrees of freedom associated

with T traits; and (c) the last two columns reflect the M-1 method contrasts such that the first method contrast

represents the difference between the M1 and the average of M2 and M3 and the recond method contrast reflects the

difference between M2 and M3 (averaged over traits); these are like the ANOVA contrasts used to reflect the M-1

degrees of freedom associated with M traits. Whereas any alternative set of contrasts can be used (Browne, 1989;

also see Kenny & Kashy, in press), Wothke (1984, 1987) argued that the use of orthonormal contrasts like in equation

2 facilitates subsequent interpretations.

The most important parameter estimates in the CCA model are in the variance/covariance matrix (40 )

reflecting the general factor, and the trait and method contrast factors. An arbitrainess of the scale is resolved by

fixing the variance of the general factor to 1.0 so that variance estimates for the trait and method contrast factors are

evaluated relative to the size of the general factor. In the "block diagonal" model considered here, covariances

among trait contrast factors and among method contrast factors are estimated, but all other covariances are

constrained to be zero. For the "scale free" version of Cie model that is most generally useful and appropriate for the

analysis of correlations, Wothke (1987) noted that models with covariance terms involving the general factor are not

identified when the MTMM matrix is small (i.e., 2T x 2M) and, apparently, are empirically underidentified for larger

designs. Whereas it is possible to estimate correlations between traits and methods, Wothke's (1984, 1987)

investigation with 23 MTMM matrices indicated that this model frequently resulted in improper solutions.

Wothke (1987) expanded his 1984 presentation by suggesting alternative summaries of the

variance/covariance ) matrix (e.g., generalized dispersion components, eigenstructures and associated eigenvalueL,

and varimax rotations) that may facilitate the interpretation of CCA parameter estimates. Nevertheless, the critical

parameter estimates -- the variance components associated with the general factor and the trait and method contrast

factors -- arc not easily interpreted in relation to the terms typically used in MTMM studies. Making a ielated point,

Browne (1989) indicated that relations among trait contrast factors and among method contrast factors provide 'lily

indirect information about correlations between traits and between methods, and that the arbitrainess of the contrasts

used in K leads to an arbitrainess in the interpretation of the parameter estimates in O.

In an attempt to relate his model to traditional MTMM terminology, Wothke (1987; p. 38) proposed that

convergent validity is supported if the variance/covariance matrix of method contrast factors approaches zero and that

discriminant validly is established when the determinant of the variance/covariance matrix of trait contrast factors is

large. There are, however, potential limitations with both these proposals.
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1. Not even a comOote absence of method effects provides support for convergent validity, whereas it is

possible for convergent validity to exist even when there are substantial method effects. Hence, inferonces based OK

method contrast factors are apparently a weal: basis for inferring convergent validity.

2. A zero determinant of the trait contrast factor variance/covariance matrix indicates that at least one trait is

a linear combination of the remaining traits, thereby precluding suppoit for the discriminant validity of all the traits.

However, the zero determinant could occur when all the traits are correlated 1.0 with each other (a complete lack of

discriminant validity), or when all but one of the traits are uncorrelated but the one remaining trait is a linear

combination of the other traits. In neither case would there be complete support for discriminant validity, but in the

latter there apparently would be strong support for the discriminant validity of all but one of the traits. Hunce,

inferences about discriminant validity based on the determinant of the covariance matrix of trait factors may not be

sufficiently sensitive to provide a useful indication of the extent of support for discriminant validity.

It is useful to examine similarities between the ANOVA and CCA in. dels. Both models provide estimates

of variance associated with a general factor, trait contrasts, and method contrasts. For both approaches:

(a) The CCA general factor, like the subjects term in the ANOVA model, is based on a subject's mean score

across all measures so that the variance component is the between subject variance in this grand mean score. The

relative size of this variance component reflects an overall average agreement across traits and methods; if scores

reflecting different traits and methods are all equal within each subject but vary across subjects, then all the variance

will be due to the general factor. Thus, in the ANOVA model, this term is defined as the convergent validity effect

(although we noted that limitations with this interpretation).

(b) The variance components associated the trait contrast factors, like the trait x subject interaction in the

ANOVA model, reflects the extent to which profiles of trait scores vary from subject to subject. To the extent that

this component is large, subjects differ systematically in how they are ranked on the different traits. If the trait scores

for each subject are equal, then the traits do not differentiate among subjects. Thus, this variance component

provides an apparently useful indication of discriminant validity.

(c) The variance components associated with the method contrast factors, like the method x subject

interaction in the ANOVA model, reflect the extent to which profiles of method scores vary from subject to subject.

To the extent that this component is large, subjects differ systematically is how they are ranked on the different

methods. If scores reflecting the different methods are equal for each subject, then the methods do not differentiate

among subjects. Thus, this variance component provides an apparently useful indication of method effects.

(d) Both models emphasize the global evaluation of variance components and not the formative evaluation

of specific measures, traits, and methods that apparently is an important contribution of the MTMM paradigm as a

formative tool.

(e) The ANOVA and CCA models are sensitive to the orientation of the variables (i.e., changes in sign

associated with a given variable). Thus, as noted earlier, the change in orientation of any variable will typically have

a substantial effect on the variance components. (This characteristic of the CCA model and its implications are

discussed further in relation to analyses of the Kelly and Fiske data,). As a consequence, it is probably advisable to

reflect all traits so as to maximize the number and extent of positive correlations in the MTMM matrix.

There are, however, important differences in the ANOVA and CCA approaches. Inferences in the ANOVA

model are based on measured variables whereas those in the CCA model are based on latent variables. In the

ANOVA model the variance associated with the general factor is 'nterpreted as an indication of convergent validity;

Wothke placed little emphasis on the variance of the general factor in his CCA model except as a basis of comparison

4 fl
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for other variance components, but offered no criteria of convergent validity other than a lack of method effects.

Noting limitations in Wothke's proposed test of convergent validity, we suggest that the size of the variance

component associated with the general factor -- in relation to those associated with traits and methods -- may be the

best indication of convergent validity available in the CCA model. There are also apparently important differences in

how the variance components associated with each of the T-1 trait contrasts and the M-1 method contrasts are

combined. In the ANOVA model, the valiance components are combined additively, whereas Wothke's proposal to

use the determinant implies a multiplicative combination.1 The difference between the two approaches js clear in the

example noted earlier in which all but one trait is uncorrelated with the others and the remaining trait is a linear

combination of the others. An additive combination would result in a nonzero, possibly very large combined effect of

the trait contrasts, whereas the product combination would result in a zero combined effect.

Composite Direct Product Model

The CFA and CCA models considered here implicitly assume that trait and methocl effects are additive.

Observations by Campbell and O'Connell (1967, 1982) and others, howe- or, suggest that the relation may be

multiplicative or a combination of multiplicative and additive rather than strictly additive. Both the additive and

multiplicative models posit that correlations between traits measured with the same method will be higher than

correlations between traits measured with different methods -- a method effect. If this method effect is additive, then

the increase in correlation due to this method effect is expected to be relatively similar for all correlations of differing

magnitudes. Campbell and O'Connell, however, suggested that the method effects are systematically larger for traits

that are more highly correlated and systematically smaller for traits that are less correlated. This empirical

observation suggests that method effects have a multiplicative effect on trait correlations.

Campbell and O'Connell (1967, 1982) offered two different interpretations of this multiplicative effect. The

differential augmentation perspective is that observed correlations are a multiplicative function of the true correlation

and a method bias. According to this perspective, when true traits are uncorrelated there will be no bias (i.e., the

method effect multiplied by zero is zero). In contrast, when traits that are substantially correlated the correlation

between the traits based on the same method will be biased so lung as the method effect is nonzero. This portrayal of

method effects differs from the additive model that implicitly assumes that the size of method effects does not vary

according the size of true trait correlations. The differential attenuation perspective suggests that the use of different

methods will attenuate the true correlation between two traits. The extent of this attenuation, however, will vary

according to the size of the correlation If the true trait correlation is already zero, the correlation cannot be

attenuated. In contrast, if the true trait correlation is substantial, then the empirical correlation can be attenuated

substantially. According to this perspective, the correlation between two traits measured by the same method is the

more accurate estimate of the true correlation, and this correlation is attenuated when different methods are used.

This perspective is apparently consistent with the typical simplex pattern of relations observed in longitudinal data

whereby the size of correlations between traits declines systematically as the time between the collection of the

measures becomes longer.

Browne (1984), based in part on earlier work by Swain (1975), described the composite direct product

(CDF) model that posits a multiplicative rather than an additive combination of trait and method effects. According

to the CDP mo 1 there are two component correlation matrices in a MTMM matrix of correlations among laient

variable scores (Pc), one containing correlations between latent traits (Pt) and the other containing correlations

between latent methods (Pm). According to the CDP model, the covariance matrix of measured vari/.....es with

dimension (mt x tnt) can be expressed as:



(3)
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D ( Pm x Pt + E )

where Pm is an (m x m) latent variable score correlation matrix of method components, Pt is a (t x t) latent variable

score cormlation matrix of trait components, D is a (mt x mt) positive definite, diagonal matrix of scale co Araints

reflecting latent variable score standard deviations, E is a positive, definite diagonal matrix of uniquenesses reflecting

the ratio of unique score variance to latent variable score variance, and x indicates the right direct Kronexker product

of Pm and Pt.

The values of D are typically of no interest and are designed primarily to absorb scaling changes such as those

involved in going from a covariance matrix to a correlation matrix. The E values, however, represere the ratios of

unique score standard deviations to latent variable score standard deviations. Browne (1984, 1989) noted that these

values can be interpreted as the correlation between an observed and latent variable score, an "index of

communality," when transformed by the formula:

(4) communality (Ti, Mr) = 1 / [1 + (E(Ti, Mr)]

According to the CDP model, the correlation matrix Pc, appropriately corrected for attenuation, has the direct product

structure:

Pc = Pm x Pt

where Pm is the correlation matrix of relations among latent method factors with a typical element being r(Mr, Ms)

and Pt is the correlation matrix of relations among latent trait factors with a typical element being r(Ti, Tj). From this

definition it follows that for latent variable scores

(4) r(TiMr, TjMs) = r(Ti,Tj) r(Mr,Ms)

It is useful to demonstrate the relation between Pm, Pt, and Pc using, for example, a 2T x 3M design.

(5)

Pm x Pt = Pc = Pc x Pt

1 1

M21 1 121 1 121 1

M31 M32 1 M21 T21xM21

T21xM21 M21 121 1

M31 T21xM31 M32 121 xM32 1

T21xM31 M31 T21xM32 M32

where, for example, T21 is the correlation between traits 1 and 2 and T21xM31 is the product of the correlation

between traits 1 and 2 and the correlation between methods 3 and 1. All elements of Pt are multiplied by each

element of Pm. Thus, the relation between traits 1 and 2 measured with method 1 is121 multiplied by M1 1 = 1 so

that the product is simply r2 1 . Similarly, the relation between trait I measured with methods 1 and 2 (i.e., a

convergent validity) is M21 times T11 = 1 so that the convergent validity is simply M21. Thus, the coefficients in the

off-diagonal of Pm reflect convergent validity. Note also, that the correlation between the same trans is as.sumed to

be constant across all methods (i.e., r(T1M1,T2M1) r(T1M2,T2M2) = r(T1M3,T2M3) = T21). Similarly, the

correlationh.ttween two methods -- convergent validity -- is assumed to be the same across all traits (i.e.,

r(T1M1,T1M2) = r(12M1,T2M2) = M21). Because the 15 off-diagonal values in this Pc are expressed in terms of

only 4 estimated parameters (T21, M21, M31, M32), the CDP model it very parsimonious.

Browne (1984, 1989; also see Bagozzi & Yi, 1990; Cudeck, 1V38) notes that an important advantage of this

model is that it provides parameter estimates that can be used to evaluate the original 4 Campbell-Fiske guidelines.

1 r(TiMp, TiMq) = r(Ti,Ti) r(Mp,Mq) = r(Mp,Mq) » 0.

121 1
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According to the CDP model, eath convergent validity for latent variable scores is equal to one of the off-diagonal

values in Pm. Hence, the first Campbell-Fiske criterion is satisfied whenever all the off-diagonal values in Pm are

statiMically significant, large, and positive.

2 r(TiMp, TiMq) > r(TiMp, TjMq) implies

[r(TiMp, TjMq)] / [r(TiMp, TiMq) ] = [r(Ti,Tj) r(Mp,Mq)] / [r(Mp, Mq) ] = r(Ti, Tj) < 1.0

According to the CDP model, the latent variable trait correlations, the off-diagonal values in Pt, are the ratio of

HTHM correlations to the convergent validities. Hence, the second Campbell-Fiske criterion is met whenever the off-

diagonal values of Pt kire less than 1.0. This will always be the case so long as the CDP solution is proper such that Pt

is positive definite.

3 r(TiMp, TiMq) > içriMp, TjMp) implies

[r(TiMp, TjMp)] / [rcriMp, TiMq) ] = [r(Ti,Tj) ] / [r(Mp, Mq) ] < 1.0

According to the CDP model, the ratio of HTMM correlations to the convergent validities is the ratio of trait

correlations to method correlations. Hence the third Campbell-Fiske guideline is met when all the off-diagonal values

in Pt are less than all the off-diagonal values in Pm.

4 r(TiMp, TjMq) > r(TkMp, T1Mq) implies r(TiMr, TjMs) > r(TkMr, T1Ms)

This criterion is met whenever the CDP model fits the data because:

r(TiMr, TjMs) / r(TkMr, TIMs) = r(Ti, Tj)/ r(Tk, T1) has the same value for any Mr or Ms.

Although not explicitly noted in previous presentations of the CDP model, it is also possible to interpret the

additional guidelines from the Campbell-Fiske approach (see guidelines 5 and 6 discussed earlier) in terms of the

CDP model.

5 r (TiMp, TjMp)/ [(r (TiMp, TiMp) r(TjMp, TjMp)] 1t2 « 1
Because the values in Pt reflect correlations among latent trait factors, this condition is satisfied whenever the CDP

model results in a proper solution in which Pt is positive definite. Also, as noted earlier, the CDP model provides an

estimated communality the can serve as an estimate f reliability.

6. r(TiMr, TjMr) > r(TiMr, TjMs) implies r. Avir, TjMs)] / [r(TiMr, TjMr)] =

[r(Ti,Tj) r(Mr, Ms) ] / [r(Ti,Tj) r(Mr,Mr)] = [r(Ti,Tj) r(Mr, Ms)1/ [r(Ti,Tj)] = r(Mr, Ms) < 1.0

According to the CDP model, there are method effects whenever the correlations in Pm are less than 1, and so there

are always method effects when the CDP results in a proper solution in which Pm is positive definite. Also evident in

Ids derivation is the observation that r(Mr, Ms) reflects both convergent validity (see guideline 1) and method effects

(i.e., the ratio of HTHM r.nd the corresponding HTMM correlations). Whereas this observation appears paradoxical

from the traditional "additive" perspective, it follows naturally from the "multiplicative" perspective underlying the

CDP model.

It is also possible to place further constraints on the CDP model that may be useful in particular situations.

Thus, for example, it is possible to further restrici the structure of E, the diagonal matrix of uniquenesses, so that it

also has a direct product structure (Browne, 1984, 1989; Wothke & Browne, 1989). Also, if the covariance matrix

rat; than the correlation matrix is analyzed, it is possible to further restrict the structure of D, the diagonal matrix of

scale constraints reflecting latent variable score standard deviations. Such models may be useful when the MTMM

data renew multiple battery data, such as when the same mtasures are collected on multiple occasions, but are

apparently less relevant to other MTMM designs and are not central to interpretations of convergent validity,

discriminant validity, and method effects (for further information see Browne, 1984; 1989).

Results of the Latent Construct Approaches

1
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Proper Solutions and Goodness of Fit.

Initially we focus on the ability of the latent variable models -- the CFA, CCA, and CDP models -- to fit the

data. The evaluation of fit in covariance structure analysis has recently received considerable attention and a detailed

discussion of the issues is beyond the scope of this study (see Bent ler, 1990; Cudeck & Hen ly, 1991; Marsh, Balla,

and McDonald, 1988; McDonald and Marsh, 1990 for general discussions and Marsh, 1989, for a discussion in

relation to MTMM data). Whereas there are no well established guidelines for what minimal conditions constitute an

adequate fit, a general approach is to: (a) establish that the solution is "proper" by establishing that ihe model is

identified, the iterative estimation procedure converges, parameter estimates are within the range of permissible

values (i.e., are inside the admissile parameter space), and the size of the standard error of each parameter estimate is

reasonable; (b) examine the parameter estimates in relation to tha substantive, a priori model and common sense; (c)

evaluate the X2 and subjective indices of fit for the model and compare these to values obtained from alternative

models.

In the evaluation of MTMM models there is an unfortunate tendency to deemphasize the first two points. If

a solution is ill-defmed, then further interpretations must be made cautiously if at all. If the parameter estimates make

no sense in relation to the substantive, a priori model, then fit may be irrelevant. For example, if two indicators of the

same trait factor are supposed to load in the same direction but actually load in the opposite direction, then the results

do not support the construct validity of the trait even if the model fits the data well. In this respect, the first criterion

is a prerequisite for the next two and the second criterion is a prerequisite for the third.

For each of the latent variable models, solutions are proper if the model is identified and if the estimated

parameters fall within their permissible range. For models considered here a proper solution requires that all

estimated covariance matrices should be positive definite. In the CFA models this means that there are no negative or

zero variance estimates and that factor correlations do not exceed 1.0. For the CDP and CCA models this means that

the matrices of scaling components and error components contain no negative or zero values. Using

reparameterizations such as those suggested by Rindskopf (1983; also see Marsh, 1989) it is possible to restrict, for

example, a negative variance estimate to be non-negative. Typically this results in the offending parameter taking on

a aro value that is on the boundary of the permissible parameter space and in a slight decrement in goodness of fit

reflecting this implicit inequality constraint. Marsh (1989) argued that whereas this may be useful in some situations,

it is important to emphasize that a solution with, for example, a zero variance estimate is still improper and should be

tmated with the same caution as if the parameter estimate were negative. In this sense, the reparameterization does

not alter the underlying problem but merely serves to make it less obvious. Making a similar point, Joreskog and

Sorbom (1989) emphatically stated that "it should be emphasized that constraining error variances to be non-negative

does not really solve the problem. Zero estimates of error variances are as unacceptable as are negative estimates" (p.

215). There is an ongoing debate about whether improper solutions warrant any serious consideration and, if they are

considered, the conditions under which interpretations are justified. Not wanting to enter this debate in relation to

particular applications in the present investigation, our position iv that if a model frequently results in improper

solutions across a wide range of applications for which the model is intended, then the usefulness of the model is

limited (see Marsh & Bailey, 1991).

Goodness of fit is evaluated in part with an overall X2 test. As typically employed the posited model is

rejected if the X2 is large relative to the degrees-of-freedom (df), and accepted if the X2 is small and nonsignificant.

However, hypothesized models such as those considered here are best regarded as approximations to reality rather

than exact statements of truth so that any model can be rejected if the sample size is sufficiently large. Conversely,
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almost any model will be "accepted" if the sample size is sufficiently small. From this perspective Cut leck and

Browne (1983) and many others have argued that it is preferable to depart from the hypothesis testing approach that

assumes that any model will exactly fit the data.

As emphasized by Bender (1990), when two models are nested the statistical significance of the difference

in the X2s can be tested relative to the difference in their df. Widaman (1985) emphasized this feature in developing

his taxonomy of MTMM models and in comparing the fit of different models. However, the problems associated with

hypothesis testing based on the X2 statistic also apply to tests of X2 differences. Furthermore, many important

comparisons are not nested and so cannot be compared using this procedure. For example, whereas the CFA-CTUM

is nested under both the CFA-CTCM and CFA-CTCU models, neither of these latter two models is nested under the

other. Nevertheless, a pattern of nested relations does facilitate interpretations in differences in fit.

Researchers have developed a plethora of different indices of fit, but there is no clear consensus about which

are the most useful. Whereas a comparison of different indices is beyond the scope of this study, we present results

for the; the X2 that can be used to compute values for most other indices; the relative noncentrality index (RNI;

McDonald & Marsh, 1990), the Tucker-Lewis index (TLI; Tucker & Lewis, 1973; also see Marsh, Balla &

McDonald, 1988; McDonald & Marsh, 1990), and the single-sample cross-validation index (Ck; Browne & Cudeck,

1989; Cudeck & Hen ly, 1991). Both the TLI and RNI indices scale goodness of fit along a scale that, except for

sampling fluctuations, varies between 0 and 1. Values greater than .9 are typically interpreted as indicating an

acceptable fit, although it may be more useful to compare the values of alternative modelo. The Tu and RNI differ

in that the TLI contains a penalty function based en the number of estimated parameters whereas the RNI does not.

The Ck index is designed to select the model that will cross-validate most effectively, and so it imposes a penalty that

is a an increasing function of the number of estimated parameters and a decreasing function of the sample size.

The minimal condition for an acceptable fit is a proper solution. If the solution is improper, then further

consideration should be pursued with extreme caution and may be dubious. This problem has been prevalent in the

application of the CFA models -- particularly the CFA-CTCM model. The prevalence of this problem led, in part, to

recommendations for the CFA-CTCU, CCA, and CDP models.

The CFA-C1CU, CFA-CT and CFA-CTUM models resulted in 0, 1 and 2 improper solutions tespectively,

whereas the CCA and CDP models each resulted in one impoper solution. Consistent with previous research (e.g.,

Marsh, 1989; Marsh & Bailey, 1991; Wothke, 1984; 1987), the CFA-CTCM resulted in a proper solution for only 1 of

the 5 MTMM matrices (Table 2). All other models considered here performed better than the CFA-CTCM model in

terms of resulting in proper solutions. Consistent with findings by Marsh and Bailey (1991), the one proper solution

for the CFA-CICM model was obtained when the sample size (N = 1200) and MTMM design were large (5Tx3M vs.

3Tx3M). The consistency with which the CFA-CTCM model results in improper solutions undermines its usefulness

and suggests, perhaps, that it should not be given a central role in the empirical evaluation of MTMIVIdata. This is a

very serious problem because most applications ch. the CFA approach -- and the relatively few comparisons of the

CFA approach with other latent variable approaches -- hays relied exclusively a primal:Lon the CFA-CTCM model.

Insert Table 2 About Here

For all five data sets, the X2s associated with the CFA-CTCU model were better than those for any the other

models that resulted in proper solutions. The nA, incorporating a penalty for a lack of parsimony, was marginally

better for the CFA-CTUM model than the CFA-CTCU model for the Kelly and Fiske data, but the ni was better for

the CFA-CTCU model than any other model that resulted in a proper solution for each of the other data sets. The Ck
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that imposes a penalty function that depends on sample size, was better for CDP model than the CFA-C'TCU model

for the Lawler data that had the smallest sample size. The TLIs and RNIs were all substantially greater than .9 for the

CFA-CTCU model each of the five data sets.

The examination of goodness of fit -- both the number of improper solutions and the fit indices pmvide

support for the CFA-CTCU model. There are, however, some relevant qualifications to these conclusions. For all

the data sets, several different models provided apparently acceptable Tits in that the solutions were proper and both

the ILI and RNI were larger than .9. Because the CFA-CTCU model is considerably less parsimonious -- uses more

estimated parameters to fit the same data -- it may be premature to claim that A Tits the data better. Also, because the

CFA, CCA and CDP models are so different, it is important to evaluate the usefulness of alternative models in terms

of interpretations of the parameter estimates in relation to providing information about convergent validity,

discriminant validity, and method effects and providing a formative evaluation of each trait-method unit.

illtraddiNit1SSW94.111111all

The comparison of the fit indices for the various CFA models (Table 2) is facilitated by the nesting relations

among the models. The strategies used to compare these model outlined here appear to offer a reasonable basis for

evaluating assumptions underlying the models. The CFA-CT model is nested under the other CFA models considered

here. The size of the difference in fit between the CFA-CT model and each of the other models provides qn indication

of the size of the method effects. For all five data sets, the fit of the CFA-CT model is significantly poorer than the

other CFA models, indicating the existence of method effects. Whereas the comparisons vary somewhat depending

on which models are compared, the infencd method effects are smaller for the Byrne data, the YIT data, and to a

lesser extent, the Kelly and Fiske data. In contrast, the size of method effects are larger for the Lawler data and the

Ireland data (although the improper solution for the CFA-CT model for the Ireland data dictates caution).

The comparison of the CFA-CTUM and CFA-CTCU models provides a test of the unidimensionality of

method effects associated with each method when T > 3 and both models result in proper solutions. For the two data

sets with T=3 (the Byrne data and the Lawler data) the CFA-CTUM and CFA-CTCU models are equivalent so long

as both result in proper solutions, but the CFA-CTUM solutions were both improper (Table 2). For two of three

remaining data sets with T=5, the fit of the CFA-CTCU is significantly better than the CFA-CTUM model,

suggesting that the method effects are not unidimensional. For one data set (Kelly and Fiske) the CFA-CTUM and

CFA-MU do not differ significantly, suggesting that the method effects in this study are unidimensional.

The comparison of the CFA-CTUM and CFA-CI'CM models provides a test of whether the method effects

associated with different methods are correlated, so long as both models result in proper solutions. The fit of the

CFA-CTCM is consistently better than the CFA-CTUM model, suggesting that effects associated with different

methods may be correlated. These results must, however, be viewed cautiously since the CFA-CTCM resulted in

'..aproper solutions for all but the YIT data. For the YIT data, the fit of the CFA-CTCM model is better than the CFA-

CTUM model, but the difference in fit (e.g., 'TLIs of .978 and .982) is very small.

In general, the CFA-CTCM and CFACTCU models are not nested. Whcn T=3, however, the CFA-CTCU

and CFA-CTUM models Ire equivalent (method effects are necessarily unidimensional) and so the CFA-CTCU

model is nested under the CFA-CTCM model. For the two data sets with T=3, the fit of the CFA-CTCM fit is

marginally better than that of the CFA-CTCU. Interpretations must be made cautiously, however, since the CFA-

CTCM solutions are improper. For the three data sets with T=5, the CFA-CTCM and CFA-C1CU models are not

nested; the CFA-CTCM model fit better in one case whereas the CFA-CTCU fit better in the other two cases. Except

22
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for the YIT data in which the CFA-CTCU model fit better, however, the improper solutions for the CFA-CTCM

model dictate caution in these comparisons.

Comparisons among the CFA models are most useful for the YIT data since all the CFA models resulted in

proper solutions. For this data set, most of the variance can be explained by the CFA CT model (TLI = .903),

although models with method effects (TLIs of .978 - .994) fit the data significantly better. The CFA-CTUM/CFA-

CTCM comparison (.978 vs. .982) suggests that the effects assoe!sted with different methods are slightly conelated.

The CFA-CTUM/CFA-CTCU comparison (.978 vs. .994) suggests that the various effects associated with each

method are not unidimensional. Overall the CFA-MU model fits the best, even though there is some indication that

its assumption of uncorrelated method effects is violated to a small extent (as evidenced by the CFA-CTUM/CFA-

CTCM comparison). Hence', it may he useful to compare parameter estimates for the CFA-CTCM and CFA-CTCU

models (see below).

Thre.CEA Models: Interumatiunlilanlinatalstimics.

Parameter estimates for the CFA-CTCU model are summarized for all five data sets in Appendix 2. Also

presented is the CFA-CT1JM solution for Kelly and Fiske data that did not differ significantly from the CFA-CTCU

solution, and the CFA-CTCM solution for the YIT data that was the only case in which this model resulted in a

proper solution. For all models, large and statistically significance trait factor loadings provide an indication of

convergent validity whereas large trait factor correlations -- particularly those approaching 1.0 -- suggest a lack of

discriminant validity. Method effects are inferred from large and statistically significant method factor loadings in

the CFA-CTCM and CFA-CTUM models, and from large and statistically significant correlated uniquenesses

(among different variables assessed by the same method) in the CFA-CTCU model.

Byrne &VI. In the CFA-CTCU solution (Appendix 2) the trait factor loadings are consistently very large, the

trait factor correlations are small or moderate, and the correlated uniqueness are small to moderate. As predicted,

correlations between T2 and T3 are close to zero whereas other trait correlations are larger. It is also evident that

method effects are smaller for MI than for M2 and particularly M3, whereas trait effects are smaller for M3. These

results provide strong support for the construct validity of interpretations of these data.

Lowler dam. In the CFA-CTCU solution (Appendix 2) the trait factor loadings are large for M1 and M2, but

small or nonsignificant for M3. The trait correlations are moderately large, but do not approach 1.0. Correlated

uniquenesses are small to moderate. These results provide reasonably strong support for the construct validity of

interpretations of measures associated with M1 and M2, but may call into question those based on M3 where T3M3 is

the only variable with a significant trait factor loading.

=Alma. Solutions are presented (Appendix 2) for both the CFA-CTCU and CFA-CTCM methods since

this is the only data set in which the CFA-Crafmodel resulted in a proper solution. For both models, the trait

factor loadings are consistently high whereas the trait factor correlations are small to moderate. Although these

parameter estimates are similar in the two models, there is a tendency for trait factor loadings and trait factor

correlations to be somewhat higher in the CFA-CFCU model (also see Marsh and Bailey, 1991; Kenny & Kashy, in

press). Other parameter estimates in the two models, however, are not so easily compared. Correlated uniquenesses

in the CFA-CTCU model tend to be small and more than half are nonsignificant, indicating weak method effects.

Method fwtor loadings in the CFA-CTCM model are small to moderate but most are statistically significant,

apparently providing somewhat stionger evidence of method effects than the CFA-CTCU model. In the CFA-0'CM

model, the Ml/M2 and M1/M3 correlations are small, but the M2/M3 correlation is moderate. In the CFA-CTCU

model, effects associated with different methods are assumed to be uncorrelated. The uniqueness terms in the CFA-
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CTCU model are systematically larger than those in the CFA-CfCM model because they include the effects of both

the uniqueness and method effects in the CFA-CTCM model. For the same reason, the squared multiple correlations

(SMCs) are smaller for the CFA-CICU model than the CFA-CTCM model. If the effects associated with a single

method are unidimensional, the CFA-CTCM model provides a more parsimonious and useful representation of

method effects (i.e., the squared method factor loading can be interpreted as the proportion of variance due to method

effects). If, on the other hand, the method effects are not unidimensional, then this convenient summary offered by

the CFA-CTCM may be inappropriate.

licily_Andliskcjam. Here the CFA-CTCU and CFA-CTUM solutions (Appendix 2) are compared. Given

that the two solutions are nested and do not differ significantly, it is not surprising that the trait factor loading and

trait factor correlations are similar. Trait factor loadings are consistently large for MI, large for all but T4M2 for M2,

and moderate for M3. Trait correlations are small to moderate. For both models method effects are small for MI

(except T3M1) and small to moderate for M2 and M3. Particularly because the difference between the two models is

nonsignificant, the more parsimonious, convenient representation of method effects in the CFA-CTUM model is

preferable to the CFA-CTCU model in this example.

Ireland dam. Here, the CFA-C'TCU and CFA-CTUM solutions (Appendix 2) are compared. Whereas the

CFA-CTCU model fit the data significantly better, the difference was not large (TLIs of .988 and .964). Again, the

trait factor loadings trait factor correlations are very similar for the two models. The trait factor loadings are

consistently high, indicating convergent validity, but the trait factor correlations are so high that there is little or no

support for divergent validity. Although the method factor loadings and correlated uniquenesses are not directly

comparable, both indicate moderate to large method effects. These results thus suggest a good overall agreement

across the different methods, but a clear lack of discriminant validity.

The CCA Model

CCA parameter estimates for the five data sets are summarised in Appendix 3. The critical parameter

estimates are the variance components associated with the trait and method contrast faztors. For present purposes we

interpret large variance components associated with trait contrast faztors as support for discriminant validity and

large variance components associated with method contrast factors as evidence of method effects. With misgivings

based on limitations noted earlier, we interpret large variance components associated with the general factor

compared to those associated with trait and method contrasts -- as support for convergent validity because this is

apparently he only available indicator of convergent validity. Also, because the general variance component is fixed

to 1.0 to establish the scale of the other variance components, the size of all other variance components must be

interpreted in relation to that of the general factor.

Byrne clAta. The variance components associated with trait contrasts are larger than those associated with

method contrasts (see Appendix 3), but the largest component is for the general factor. This suggests the existence of

weak method effects, clear support for discriminant validity, and even stronger support convergent validity.

ler data. The variance components associated with method contrasts are larger than those associated

with trait contrasts (Appendix 3), but the largest component is for the general factor. This suggests substantial method

effects, limited support for discriminant validity, and strong support for what is interpreted to be convergent validity.

Ilichga. The variance components associated with method contrasts are smaller than those associated with

trait contrasts (Appendix 3), but the largest component is for thc general factor. This suggests a relative laic of

method effects, clear support for discriminant validity, and strong support for what is interpreted to be convergent

validity.
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Kelly and Fiske data. The variance components associated with method contrasts are generally smaller than

those usociated with trait contrasts (Appendix 3), but the component for the general factor is larger than all but one

of the components associated with traits and all the components associated with methods. This suggests relatively

small method effects, support for discriminant validity, and support for what is interpreted to be convergent validity.

A potential weakness of the CCA approach noted earlier is its sensitivity to the orientation of traits that is

evident in a second analysis of the Kelly and Fiske data. T3, ratings of the trait "seriousness," tends to be negatively

correlated with the other traits (see Appendix 1). We reanalyzed the Kelly and Fiske data after reflecting the

orientation of T3 (i.e., reversing all the signs of correlations associated with T3M1. T3M2, and T3M3). This resulted

in a different chi-square (139.09 vs. 115.87) and substantially different variance components (Appendix 3).

Specifically, the variance components associated with the trait and method contrasts are substantially smaller in the

reanalysis. This follows because the variance component of the general factor is the between subject variance on the

mean score and reflects the average correlation among all the (latent) measures. Its value is fixed at 1.0 and the size

of other variance components are scaled in relation to its value. By reversing the signs of the predominantly negative

correlations between T3 indicators and the other measures, the average correlation among measures is increased as is

the between subject variance on the mean score. This results in a higher proportion of the variance due to the general

factor, which in the CCA model is translated into lower variance components due to trait and method contrast factors.

It should be noted that if all measures in a MTMM study are substantially and positively correlated, reversing the

orientation of one of the traits would typically have even larger effects than in the Kelly and Fiske data. The

reflection of "negatively oriented" traits so as to maximize the average correlation among all traits is probably a

reasonable rule to overcome this apparent arbitrainess in the CCA approach, although Wothke (1987) did not do this

with the Kelly and Fiske data. More generally, however, the extreme sensitivity of the CCA approach to the

orientation of traits appears to be a potentially serious limitation in the approach.

Ireland da. The CCA model resulted in an improper solution. As a pragmatic alternative, we fit the

completely diagonal version of the CCA in which covariances among trait contrast factors and among method

contrast factors were all fixed to be zero (see CCA-Diag in Appendix 3). The completely diagonal model is not

generally recommended because it depends on the appropriateness of the particular contrasts in a way that is

idiosyncratic to a particular application (see Wothke, 1984; 1987). The variance components associated with method

contrasts are larger than those associated with trait contrasts, but the component for the general factor is much larger

than those associated with either trait or method contrasts. This suggests small method effects, ahnost no support for

discriminant validity, and strong support for what is interpreted to be convergent validity.

The CDP Model

CDP parameter estimates for the five data sets are summarised in Appendix 4. The critical parameter

estimates are the correlations among trait factors and among method factors. As noted earlier: (a) high method factor

correlations are interpreted as support for convergent validity (agreement between measures based on different

methods); (b) trait factors substantially smaller than 1.0 and smaller than the method factor correlations are

interpreted as support for discriminant validity. Method effects have a very different interpretation within the context

of the "multiplicative" CDP model than in the additive models considered earlier and, according to the CDP model,

there are always method effects whenever the CDP solution is proper.

Byrne data. The Pm correlations for the Byrne data are consistently very large and consistently larger than

the Pt correlations, whereas the Pt correlations are consistently smaller than 1. This implies clear support for all the

Campbell-Fiske guidelines and strong support for the construct validity of these measures. The relative lack of
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correlation between T2 and T3 observed in the MI'MM matrix is evident in Pt. Similarly, the apparently stronger

agreement between measures based on Ml and M2 is evident in Pm.

Lawler data, The Pm correlations in the Lawler data are all statistically significant, but only the M1M2

correlation is substantial. The Pm correlations, except for the M1M2 correlation, are consistently smaller than the Pt

correlations. In general, these results suggest modest support for convergent validity and a lack of discriminant

validity, although there is support for the convergent validity of measures based on Ml and M2. Thus, *he apparently

better agreement between measures based on Ml and M2 observed in the MTMM is also apparent in Pm.

YIT data, The Pm correlations for the YIT data are consistently large and consistently larger than the Pt

correlations, whereas the Pt correlations are small to moderate. This implies clear support for all the Campbell-Fiske

guidelines and strong support for the construct validity of these measures. The better agreement between measures

based on M2 and M3 Cuerved in the MTMM is also apparent in Pm. Whereas correlations among traits are not large,

the patterns of differences in the MTMM matrix (Appendix 1) are evident in Pt.

Kelly and Fiske daub The Pm correlations for the Kelly and Fiske data are moderate to large. Whereas the Pt

correlations are consistently less than 1.0, some are larger than the Pm correlations. Whereas the Pm correlation

tween Ml and M2 is consistendy larger than the Pt correlations, the other correlations in Pm are not. These results

suggest clear support for convergent validity, but only weak support for discriminant validity. The better agreement

between measures based on M2 and M3 observed in the MTMM matrix (Appendix 1) is apparent in Pm. Similarly,

the pattern of correlations among traits in the MTMM matrix is evident in Pt.

Irelaaidata, The Pm correlations for the Ireland are consistently large. The Pt correlations, however, are

consistently even larger and often approach 1.0. These results suggest clear support for convergent validity, but no

support for discriminant validity.

Discussion and Recommendations

Five approaches to the analysis of MTMM data are described here. Even though all the approaches use a

similar terminology (convergent validity, discriminant validity, and method effects), they employ different

operationalizations of these terms and so are not equivalent. This has led to considerable confusion in MTMM

research. For this reason it is useful to summarize strengths and weakness of the different approaches and to offer

recommendations for their use.

The Campbell-Fiske approach continue to be the best known and most widely applied of the approaches.

Despite important limitations such as a reliance on measured variables instead of latent constructs, this approach

continues to be a potentially useful and heuristic approach to the formative evaluation of MT1VD/I data. This

approach is also the basis, to a greater or lesser extent, of subsequent approaches. For this reason we recommend that

a systematic application of the expanded set of Campbell-Fiske guidelines to provide a preliminary inspection of the

MTMM data prior to the application of more sophisticated approaches. Consistent with the Campbell and Fiske's

recommendations and the many limitations in this approach, it should be used as a formative evaluation of the data

that focuses on specific trait-method units and not a global summative statement. The guidelines should not be the

sole basis for evaluating MTMM data.

The reliance of each of alternative approaches on the original Campbell-Fiske approach has botb advantages

and limitations. The widely known terminology used in the Campbell and Fiske approach has provided an important

starting point for other approaches. Nevertheless, the terms convergent validity, discriminant validity, and method

effects were not adequately dermed in the Campbell-Fiske approach and there is considerable ambiguity in how their

guidelines relate to these different aspects of MTMM data. Partly as a cons.lquence of this initial ambiguity,

26
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subsequent approaches have each adapted somewhat different and possibly incompatible guidelines for these different

characteristics. ks asserted by Kenny and Kashy (in press), it appears that Campbell and Fiske (1959) implicitly

based their original guidelines on a general CFA model. In the CFA-CTCM model it is clear that convergent validity,

discriminant validity, and method effects are a function of the sizes of trait factor loadings, trait factor correlations,

and method factor loadings respectively. Because of this apparently unambiguous interpretation of these features

based on the CFA-CTCM model, we recommend that this model should be used as a touchstone for defming

terminology in MTMM studies and for evaluating new models or different approaches. The fact that the CFA-CTCM

model typically results in improper or unstable solutions means that other approaches are needed. Similarly, lamenting

that "the rich detail of the general CFA model is not a realistically achievable goal" (p. 22), Kenny and Kashy argued

that it is necessary to introduce simplifying conditions to achieve generally interpretable results.

Recommendations For Alternative Approaches,

The ANOVA approach provides convenient summative statistics about the relative size of convergent

validity, discriminant validity, and method effects. There are, however, important limitations that apparently

undermine its usefulness. The effects in the ANOVA model bear only a tangential relation to the typical meaning of

discriminant validity, method effects, and particularly convergent validity. Also, this approach offers very little

formative information about the effectiveness of particular traits, methods, or trait-method units. A serious limitation

to the ANOVA model is that, like the Campbell-Fiske guidelines, it is based upon inferences about measured

variables instead of latent traits. Because whatever advantages there are to this appmach are apparently served more

effective/ by the CCA model, the ANOVA approach is not recommended.

The CFA approach is the most widely used latent variable approach to the evaluation of MTMM data. The

comparison of different models and the comparison of parameter estimates in models reflecting trait and method

effects provides clear evidence about convergent validity, discriminant validity, and method effects. A major

limitation of this approach has been iLS reliance on the CFA-CTCM model that typically results in improper solutions.

Furthermore, even when the CFA-CTCM does result in a technically proper solution, the solution may be sufficiently

unstable that parameter estimates should be evaluated cautiously in relation to potentially large standard errors.

Results summarized here, consistent with a large body of additional research (e.g., Marsh, 1989; Marsh & Bailey,

1991; Kenny & Kashy, in press), indicates that the problem of improper and unstable solutions is largely overcome

through the application of the CFA-CTCU model. We recommend that at least the subset of CFA models considered

here should be applied in all MTMM studies, but that the major emphasis should be placed on only those models that

result in proper solutions. The preferred model within this set will depend on which models result in proper solutions

and ability of the alternative models to fit the data, but a growing body of experience suggests that the CFA.crcu

model is the strongest modei in the CFA approach.

The CCA approach, like the ANOVA approach, provides convenient summative statistics for effects that we

have interpreted to correspond to reflect convergent validity, discriminant validly, and method effects. The important

advantage of the CCA approach over the ANOVA approach is that inferences are based on relations among latent

variables instead of measured variables. Nevertheless, other problems identified with the ANOVA model are also

evident in the CCA model. These include an apparent ambiguity in how CCA paeameter estimates relate to

terminology typically used in MTMM studies, a lack of formative information about the performance of specific

traits, methods, and trait-method units, and a sensitivity to the orientation of the traits. In addition, there is apparently

no clear resolution on how best to combine the variance components associated with trait contrasts and those

associated with method contrasts. Because of these apparent limitations, we do not recommend the routine
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application of the CCA model for general use. It is possible, however, that further development of the approach

along the lines proposed by Wothke (1987) and by Kenny and Kashy (in press) may overcome these limitations and

provide a more generally useful approach.

The CDP model offers a mathematically elegant and parsimonious model of MTMM data. Whereas it has

not been applied as widely as other latent variable approaches -- particularly the CFA approach -- results summarized

here and those described in earlier research (e.g., Bagozzi & Yi, 1990; Browne, 1984, 1989; Cudeck, 1989) suggest

that it typically results in proper solutions. Consistent with Browne's claim, the CDP model provides clear evidence

about the Campbell-Fiske guidelines and about convergent and discriminant validity as embodied in these guidelines.

The CDP model also provides parameter estimates that are typically consistent with those observed in the MTMM

matrices. Therefore, subject to the continued demonstration of its success, we recommend that the CDP model should

be used in MTMM studies.

Even though we endorse the continued use of the CDP model, we do so with some misgiving. Its parsimony

is achieved at the expense of implicit assumptions that we find worrisome such as: (a) the convergent validities for all

the different traits are equal (i.e., r(TiM1, TiM2) = r(M1, M2) for all values of i); (b) the size of method effects is the

same for different traits (i.e., r(TiMr,TjMs)/r(TiMr,TjMr) = r(Ti,Tj) x r(Mr,Ms)/ r(Ti,Tj) = r (Mr,Ms) for all values of

i and j); and (c) the size of correlations among traits is the same for all methods (i.e., r(TiMr,TjMr) = r(Ti,Tj) for all

values of r). Pt correlations typically reflect the pattern of correlations among traits in the MTMM matrix, but only if

this pattern is consistent across methods. Pm correlations typically reflect the extent of agreement between different

methods, but only if the agreement is consistent across all traits. Whereas the overall fit of the model provides an

indirect test of these assumptions, common sense suggests that they will typically be faise so that a more detailed

evaluation of the implications of violating these assumptions is needed in actual applications of the CDP model. Also,

because of these implicit invariance constraints, the CDP model does not provide a very useful formative evaluation

of specific trait-method units.

We also have some broader, philosophical concerns about the CDP model. The model, at least as applied to

MTMM data, is apparently based on an uncritical acceptance of the original Campbell-Fiske guidelines. Thus, for

example, Browne (1989) noted that "Campbell & Fiske (1959) listed four requirements for multitrait-multimethod

correlation matrices that have become generally accepted. We shall be concerned with the investigation of these

requirements" (p. xx). Whereas we agree that the heuristic value and intent of the Campbell-Fiske guidelines is

widely endorsed, we do not concur that their liteml translation as "requirements" as embodied in the CDP model is

widely accepted. Indeed, it is the many problems and potential ambiguities in the guidelines that has spawned so

many alternative approaches. Whereas the application of the CDP approach certainly provides an objectivity to

evaluating the Campbell-Fiske guidelines, it is not clear that the CDP model eliminates widely recognized

ambiguities in the interpretation of the Campbell-Fiske guidelines. Furthermore, if the underlying assumption of a

multiplicative relation between traits and methods is taken literally, then the logic of the Campbell-Fiske guidelines

and even the logic of the classical approach to test theory appears to be problematic. Whereas Browne (1984) has not

claimed that support the CDP model necessarily leads to such dire consequences, we nevertheless find paradoxical

the assumption that support for the CDP impiies a multiplicative relation between latent traits and latent methods mu

provides a basis for evaluating the Campbell-Fiske guidelines that appear to be bases on an assumption of additivity

that is invalidated by this multiplicative relationship. More generally, we are loath to relinquish the many conceptual

and theoretical advantages in the additive assumption of variance components explicit in classical test theory and
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conventional faztor analysis that would have to be abandoned if such a multiplicative model were taken literally (see

Campbell & O'Connell, 1967; 1982).

CIIIMILLS411ofik.CEA.and_CDEApproachQs

We have recommended the continued use of the CFA and CDP models, and so it is relevant to contrast the

two approaches. Both the CDP and at least the CFA-CTCU models typically result in proper solutions. Consistent

with Bagozzi and Yi (1990)2 , we found that CFA models fit real data better than the CDP model. Previous research,

however, should be evaluated cautiously because all prior comparisons of the CDP and CFA approaches apparently

were based on the CFA-CTCM that is known to be prone to improper and unstable solutions. Thus, for example, the

improper CFA-CTCM solution with the Kelly.Fiske data and with the Lawler data have been used to argue for the

superiority of both the CCA and CDP approaches over the CFA approach, but the CFA-CTCU solution is proper for

both these examples. Nevertheless, because the CDP model is not nested under any of the CFA models3, it is be

possible to construct a MTMM matrix that is better fit by the CDP model than any of the CFA modeLs. Thus, fit in

this narrowly dermed sense can never be used to demonstrate the absolute superiority of either approach. Also, the

typically better fit of the CFA models is at the expense of estimating considerably more parameters. Whereas the

TLI and Ck penalize for a lack of model parsimony, a sufficiently extreme penalty for lack of parsimony would lead

to favoring the CDP model over the CFA modc is even for the data considered here. In summary, a limited amount of

research suggests that CFA models are typically able to fit real data better than CDP models, but only at the expense

of considerable parsimony.

It is also useful to compare the interpretations of the CFA models (in Appendix 2) and the CDP models (in

Appendix 4) more closely. In terms of superficial support for convergent and discriminant validity, the two

appreaches resulted in cAmparable results for all five data sets considered here. Support for convergent and

discriminant validity were strong for the Byrne, the YIT, and to a lesser extent -- the Kelly and Fiske data. Both

approaches indicated good support for convergent validity but no support for discriminant validity with the Ireland

data. For the Lawler data both approaches offered mixed support for convergent validity, although support for

discriminant validity appeared to be stronger for the CFA approach than the CDP approach. Even this apparent

difference with the Lawler data is easily explained. Estimated trait correlations for the two approaches are very

similar and consistently less than 1.0. According to criteria for discriminant validity in the CFA model these results

constitute support for discriminant validity whereas the CDP approach -- based on the original Campbell-Fiske

guidelines -- further requires that Pt correlations are larger than Pm correlations.

While admiring the parsimony of the CDP model, it must also be recognized that this parsimony undermines

much of the heuristic value of the MTMM paradigm as a formative tool. To illustrate this concern we note that there

are specific features evident in the MTMM matrices that are reflected in the CFA solutions but not the CDP solutions.

1. in the Byrne data, .-.arrelations among traits are systematically lower for MI and systematically higher for

M3. This pattern is clearly evident in the sizes of correlated uniquenesses associated with each method in the CFA-

CTCU model (Appendix 2) but apparently not in the CDP model (Appendix 4). Also, convergent validities in the

Byrne data are consistently larger for 13. This is reflected in the higher trait factor loadings associated with T3 in the

CFA-CTCU model (Appendix 2) but not in the CDP model (Appendix 4).

2. In the Lawler data, convergent validities associated with M3 (self-ratings) are low for all traits, but clearly

larger for 13 (.30 and .30) than for Tl (.01 and .01) and T2 (.13 and .09). In the CFA-CTCU model this is evident ill

the statistically significant trait factor loading for T3M3 (.349) compared to the nonsignificant trait factor loadings for

T1M3 (.095) and T2M3 (.126), but not in the CDP model.
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3. For the YIT data, convergent validities associated with T4 are consistently smaller. This is reflected in the

trait factor loadings in the CFA models (Appendix 2) but not the CDP model. Convergent validities associated with

M2 are higher than those associated with M3 which are higher than those associated with MI. This observation is

readily apparent in the Pm correlations for the CDP model (Appendix 4), but are also evident -- perhaps less

obviously -- by noting differences in trait factor loadings associated with traits measured at MI, M2 and M3

(Appendix 2).

4. For the Kelly and Fiske data, convergent validities are consistently largest for TI and lowest for T4.

These ratterns are evident in the CFA results (Appendix 2; except, perhaps, for the anomalous trait factor loading for

T4MI) but not in the CDP solution (Appendix 4).

These more detailed comparisons of CFA and CDP solutions often revealed potentially important nuances in

the data that were captured by the CFA approach but not the CDP approach. In order to illustrate this condition more

clearly, we constructed an artificial MTMM matrix from a CFA-CTUM model (see Appendix 5) in which there were

small method effects, small to moderate trait correlations, substantial trait variance for TI and T2, and only weak

trait variance for T3. Consistent with this design of the data, convergent validities were large for T1 and T2 (.56 to

.72) but small for T3 (.09 to .15). This data should be troublesome for the CDP model that requires all convergent

validities associated with a given method to be the same. Based on a hypothetical N=500, the CDP model provided

an excellent fit to this artificial data (X2 (21) = 11.15). Parameter estimates for the CDP model reflected trait

correlations with a reasonable accuracy but not the large differences in convergent validities for the three traits.

Furthermore, the Pm correlations -- the convergent validities -- which were all greater than .9 appear to be grossly

inflated in relation to the observed convergent validities and the population model used to generate the data

particularly given that T3 was so weak. This apparent misrepresentation of the data is particularly troublesome given

the extremely good fit of the CDP model. This example, even more than the results of the 5 real data sets,

demonstrates that it is important to critically valuate parameter estimates based on different latent trait models in

relation to each other and in relation to the original MTMM matrix.

In summary, this investigation has an important message for applied researchers who wish to use the

MTMM paradigm. MTMM data has an inherently complicated structure that will not be fully described in all cases

by any of the models or approaches considered here. There is, apparently, no "right" way to analyze MTMM data

that works in all situations. Instead, we recommend that researchers consider several alternative approaches to

evaluating MTMM data -- an initial inspection of the MTMM matrix using the Campbell-Fiske guidelines followed

by fitting at least the subset of CFA models in Figure 1 and the CDP model. The Campbell-Fiske guidelines should

be used primarily for formative purposes, the CDP seems most appropriate primarily as a summative tool, and the

CFA models apparently serve both summative and formative purposes. It is, however, important that researchers

understand the strengths and weaknesses of the different approaches. Despite the inherent complexiky of MTMM

data, we feel curfident that the combination of common sense, a stronger theoretical emphasis to the design of

MTMM studies, a stronger emphasis on the quality of measurement at the level of trait-method units, an appropriate

arsenal of analytical tools such as recommended here, and a growing understanding of these analytic tools will allow

researchers to use effectively the MTMM paradigm.

3 0
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FOOTNOTES

1 -- Actually, the determinant of a variance/covariance matrix is the product of the variance components only if the

covariance terms are zero so that the matrix is diagonal. In the block diagonal CCA model covariance terms

involving the general factor and those relating trait contrast factors to method contrast factors are zero, but

covariances among the trait contrast factors and ameng the method contrast factors are freely estimated. Using the

Kelly and Fiske data, Wothke (1987) demonstrated that the orthogonalization of the submatrices involving trait

contrast factors and method contrast factors could be accomplished by an eigenvalue decomposition like that

typically conducted in principal components analysis.

2 -- It should be noted that comparisons with the Bagozzi and Yi (1990) results should be qualified in that: (a) they

reported results for only the version of the CDP model in which the error structure was required to have a direct

product structure -- a model that is more restrictive than the CDP model applied here and apparently inappropriate in

some situations; (b) they did not consider the CFA-CTCU model emphasized here and relied primarily on the CFA-

CTCM model; (c) consistent with results presented here and elsewhere, at least some of their CFA-CTCM solutions

were technically improper (Bagozzi & Yi, 1990, p. 553).

3 -- Our emphasis has been on the differences between the CDP and CFA models. In general the two models are not

equivalent, but it is possible for the two models to provide equivalent solutions in special circumstances. To illustrate

this point, we generated a MTMM matrix that was the Kronecker product of a 3x3 Pm matrix in which all off-

diagonal values were .8 and a 3x3 Pt in which all off-diagonals were .3. The CDP model, of course, provided a

perfect fit for this simulated data and captured the original Pm and Pt correlations. The CFA-CTCU model, however,

also fit the data perfectly as did the CFA-CTUM and CCA models (see Browne, 1984, 1989 for a mathematical

derivation of the conditions under which the these models result in equivalent solutions). In the CFA-CTCU model

all the squared trait-factor loadings were .8 (the off-diagonals in Pm that reflect convergent validity), whereas all the

trait correlations and correlations among uniquenesses v tre .3.(the off-diagonals in the Pt matrix that reflect both

trait effects and method effects). For other simulated data sets constructed from Pm end Pt matrices that did not have

equal off-diagonal values, the CFA and CCA models were not able to perfectly fit the data demonstrating that there

will be circumstances in which the CDP model is able to fit the data better than the other models.
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Figure 1. Four Confirmatory Factor Analysis (CFA) Models For a 4 Trait (1') x 4 Method (M) Design. Each of

the 16 measured variables (T1M1, T2M1, T4M4) is represented by a single measured variable (the boxes) and

latent trait factors (T1-T4) and method factors (MI-M4) are represented as ovals.
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Table 1

Summary of two manifest variable approaches: The Campbell-Fiske guidelines and variance components from the ANOVA model

Traditional Campbell-Fiske Guidelines ANOVA Variance Components

Study

Design

Criterion 1 Criterion 2 Criterion 3 Criterion 4

Cony Diac Meth Error

Convergent re; HTHM rs HTMM ra Patt3rn rs

T M Mn Min Max Crit 1 Mn Min Max Crit 2 Mil Min Max Crit 3 bin Min Max
MOW

Byrne 3 3 .70 .54 .87 9/9 .29 .01 .51 36/36 .35 .00 .58 33/36 .66 .66 .67 .45 .41 .06 .24

Lawler 3 3 .28 .01 .65 5/9 .16 .01 .42 28/36 .45 .14 .56 10/36 .65 .63 .66 .29 .13 .29 .43

Kelly 5 3 .36 .14 .71 14/15 .13 -.11 .41 111/120 .16 -.19 .46 97/120 .72 .50 .83 .19 .23 .03 .61

YIT 5 3 .52 .36 .63 15/15 .13 .00 .30 120/120 .17 .01 .40 119/120 .69 .41 .88 .22 .39 .04 .44

Ireland 5 3 .62 .43 .72 15/15 .59 .36 .74 88/120 .79 .49 .91 4/120 .51 .33 .65 .67 .03 .21 .18

Note. HTHM Heterotrait-heteromethod correlations. HTMM mg Heterotrait-monomethod correlations. The, ANOVA variance components represent convergent

validity, discriminant validity, method effects, and residual error respectively.

37
3E;
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Table 2

Goodness of Fit of Alternative MTMM Models For Five Data Sets

Node1

ftribe Ne3, 5=817) Lawler eie3, 503, 5e113 TIT (ie5, 5.3, 114200) Melly 4 Tisk. (T=5, 53, 5e124) Ireland (Te5, 11e3, 5e130)

CRProper X2 di PIZ XXI CI Proper X2 di TLX XXX CK Proper X2 di TLI XXI CX Proper X2 df TLX NMI CR Proper X2 df ILI nu

1111 --- 5310 36 .000 .000 6.522 348 36 .000 .000 3.258 5913 105 .000 .000 4.953 --- 545 105 .000 .000 4.674 --- 2440 105 .000 .000 19.524

CTA-C2 Yes 452 24 .878 .010 .605 Yes 101 24 .630 .754 1.305 Yes 510 80 .903 .026 493 Yes 140 80 .820 .863 1.880 No 724 80 .571 .750 5.870

cra-cTum No 79 IS .971 .988 .170 No 20 15 .961 .984 .765 Yee 143 65 .978 .087 .212 Yee 76 65 .950 .975 1.642 Yes 123 65 .064 .977 1.787

CTIL-CTON No 33 12 .988 .096 .123 No 5 12 1.070 1.023 .688 Ys 123 62 .982 .089 .201 No 57 62 1.017 1.010 1.547 No 97 42 .977 .986 1.648

cra-C7co Ys 78 15 .971 .018 .170 Yes 20 15 .962 .984 .765 Ys 79 50 .990 .995 .184 Yes 68 50 .916 .960 1.853 Yes 64 50 .088 .994 1.614

CCA. Yes 177 21 .940 .070 .276 Yee 29 21 .955 .974 .720 Yes 319 77 .943 .958 .338 Yee 105 77 .914 .937 1.448 So 158 77 .957 .948 1.845

CDP Po 172 21 .951 .971 .270 Yes 29 21 .957 .975 .726 Yes 149 77 .983 .988 .196 Yes 116 77 .179 .912 1.738 Yes 173 84 949 .963 1.949

CDP -NZ& Yes 249 25 .939 .958 .354

cch-Diagb ris 145 77 .044 .974 1.745

Note. TLI = Tucker-Lewis /ndex, RNI = Relative noncentrality index, Ck = Cross-validition index. See Figure 1 for a description of the modals.

a The Composite Direct Product Model with Kronecker Errors (CDP-108) Model was fit to the Byrne data because the CDP model resulted in an improper solution

for the Byrne data. b The Covariance components analysis completely diagonal model (CCA-Diag) was fit because the CCA model resulted in an Upriver

solution for the Ireland data.

38
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Appendix 1

Five MTMM correlation matrices used in this study.

Byrne data (3Tx3M)

tlml (.89)

t2m1 .384 (.79)

t3m1 .441 .002 (.92)

t1m2 .662 .368 .353 (.84)

t2m2 .430 .703 .008 .441 (.89)

t3m2 .465 .069 .871 .424 .136 (.95)

t1m3 .678 .331 .478 .550 .380 .513 (.87)

t2m3 .458 .541 .057 .381 .658 .096 .584 (.90)

t3m3 .414 .027 .825 .372 .029 .810 .582 .135 (.94)

Lawler data (3tx3m)

tlml 1.00

t2m1 .53 1.00

t3m1 .56 .44 1.00

t1m2 .65 .38 .40 1.00

t2m2 .42 .52 .30 .56 1.00

t3m2 .40 .31 .53 .56 .40 1.00

t1m3 .01 .01 .09 .01 .17 .10 1.00

t2m3 .03 .13 .03 .04 .09 .02 .43 1.00

t3m3 .06 .01 .30 .02 .01 .30 .40 .14 1.00

Youth In Transition (YIT) data (5Tx3M)

tlml

t2m1

t3m1

t4m1

t5m1

t1m2

t2m2

t3m2

t4m2

t5m2

t1m3

t2m3

t3m3

t4m3

t5m3

1.000

.162

.212

.256

.292

.525

.163

.136

.186

.226

.483

.141

.094

.120

.231

1.000

.085

.119

.015

.137

.588

.050

.109

.022

.123

.502

.046

.076

.068

1.000

.401

.054

.120

.088

.488

.213

.044

.103

.156

.416

.170

.050

1.000

.135

.216

.144

.215

.444

.102

.181

.157

.158

.365

.151

1.000

.231

.r1

.020

.098

.567

.192

.000

.045

.097

.505

1.000

.153

.206

.299

.346

.633

.128

.145

.236

.296

1.000

.058

.104

.050

.126

.549

.006

.065

.107

1.000

.283

.076

.162

.099

.610

.229

.043

1.000

.144

.244

.096

.208

.507

.163

1.000

.278

.027

.051

.091

.632

1.000

.097

.195

.303

.398

1.000

.027

.080

.071

1.000

.287

.054

1.000

.149 1.000
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App?"Jix 1 (continued)

Voie MTMM csrrelation matrices used in this study.

KE!.'..,Y and FISKE data (5Tx3M)

tlml

t2m1

1

.37 1

t3m1 -.24 -.14 1

t4m1 .25 .46 .08 1

t5m1 .35 .19 .09 .31 1

t1m2 .71 .35 -.18 .26 .41 1

t2m2 .39 .5.1 -.15 .35 .29 .37 1

t3m2 -.27 -.31 .43 -.06 .03 -.15 -.19 1

t4m2 .03 -.05 .03 .20 .07 .11 .23 .19 1

t5m2 .19 .05 .04 .29 .47 .33 .22 .19 .29 1

t1m3 .48 .31 -.22 .19 .12 .46 .36 -.15 .12 .23 1

t2m3 .17 .42 -.10 .10 -.03 .09 .24 -.25 -.11 -.03 .23 1

t3m3 -.04 -.13 .22 -.13 -.05 -.04 -.11 .31 .06 .06 -.05 -.12 1

t4m3 .13 .27 -.03 .22 -.04 .10 .15 .00 .14 -.03 .16 .26 .11 1

t5m3 .37 .15 -.22 .09 .26 .27 .12 -.07 .05 .35 .21 .15 .17 .31 1

Ireland data (5Tx3M)

tlml 1.000

t2m1 .86 1.000

t3m1 .86 .85 1.000

t4m1 .80 .81 .89 1.000

t5m1 .85 .84 .91 .90 1.000

t1m2 .69 .65 .65 .63 .66 1.000

t2m2 .68 .67 .65 .63 .66 .81 1.000

t3m2 .71 .68 .72 .70 .14 .75 .77 1.000

t4m2 .C6 .63 .69 .69 .66 .76 .81 .83 1.000

t5m2 .69 .68 .70 .67 .71 .84 .86 .84 .88 1.000

t1m3 .60 .52 .56 .56 .61 .63 .54 .58 .55 .59 1.000

t2m3 .58 .60 .55 .54 .61 .45 .57 .51 .48 .52 .63 1.000

t3m3 .63 .62 .61 .57 .63 .55 .55 .63 .54 .56 .68 .72 1.000

t4m3 .53 .56 .50 .53 .54 .36 .45 .48 .43 .42 .49 .74 .76 1.000

t5m3 .60 .61 .57 .57 .60 .52 .55 .61 .55 .57 .71 .73 .88 .'/7 1.000

41
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Appendix 2

Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

Byrne Data (CFA-CTCU)

Trait

Factor

unique SMC Unique. Correlations

T1M1 .869* .246* .754 1.000

T2M1 .775* 394* .604 -.119* 1.000

T3M1 .942* .113* .887 -.019 -.114* 1.000

T1M2 .731* .463* .535 1.000

T2M2 .863* .228* .765 .130* 1.000

T3M2 .930* .142* .859 .125* 499* 1.000

T1M3 754* 399* .588 1.000

T2M3 755* .450* .558 537* 1.000

T3M3 .847* .242* .748 .423* .214* 1.000

Trait Correlations

Tl 1.000

T2 .604* 1.000

T3 .596* .042 1.000

Lawler Data: CFA-CTCU

Trait

Factor

unique SMC Unique. Correlations

T1M1 .868* .240 .759 1.000

T2M1 .761* .414* .583 .251 1.000

T3M1 .781* .390* .610 .341 .268 1.000

T1M2 .730* .454* .540 1.000

T2M2 .672* .544* .454 .428* 1.000

T3M2 .691* .519* .479 .449* .263* 1.000

T1M3 .095 1.003* .009 1.000

T2M3 .126 .982* .016 .427* 1.000

T3M3 .349* .8)9* .123 .407* .154 1.000

Trait Correlations

Tl

T2

T3

1.000

.680*

.652*

1.000

.532* 1.000

A 9
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Appendix 2 (continued)

Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

YIT data: CFA-CTCU

Trait

Factor

unique SMC Unique. Correlations

T1M1 .639* .596* .406 1.000

T2M1 735* 459* .541 .051 1.000

T3M1 .579* .662* .336 .193* -.008 1.000

T4M1 .572* .668* .329 .177* -.014 .3g8* 1.000

T5M1 .674* .546* .454 .210* -.006 040 .073 1.000

T1M2 .833* .307* .693 1.000

T2M2 797* .364* .636 -.002 1.000

T3M2 .846* .286* .714 .089 .038 1.000

T4M2 .772* .403* .597 .067 -.011 .031 1.000

T5M2 .837* .302* .699 .129* -.040 .121* .041 1.000

T1M3 .755* .425* .573 1.000

T2M3 .682* .530* .467 -.036 1.000

T3M3 .724* .481* .521 .150* -.080 1.000

T4M3 .653* .578* .425 .215* .004* .197* 1.000

T5M3 .760* .425* .576 .315* .030* .006 .049 1.000

Trait Correlations

Tl 1.000

T2 .232* 1.000

T3 .247* .104* 1.00 0

T4 .413* .194* .420 * 1.000

T5 .438* .087* .067 * .222* 1.000

YIT: CFA-CTCM

Trait Method Unique SMC

Factor Factor

T1M1 .751* .224* .380* .618

T2M1 .737* -.013 .458* .543

T3M1 575* .519* .400* .600

T4M1 .561* 497* .431* .566

T5M1 .706* .077* 494* .505

T1M2 .687* .538* .251* .752

T2M2 .798* .010 .362* .638

T3M2 .820* .187* .296* .705

T4M2 734* .225* .408* .591

T5M2 .798* .263* .296* .705

T1M3 .633* .687* .142* .860

T2M3 .686* -.004 .530* .470

T3M3 .723* .183* 447* .554

T4M3 .631* .269* .527* .472

T5M3 .731* .321* .370* .638

Trait factor Correlations

Tl 1.000

T2 .255* 1.000

T3 .192* .100* 1.000

T4 .332* .195* .409* 1.000

T5 .404* .082* .038 .175* 1.000

Method factor Correlations

M1 1.000

M2 .178* 1.000

M3 .116 .571* 1.000
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Appendix 2 (continued)

Parameter Estimates From the Best Fitanq Confirmatory Factor Analysis (CFA) Models

Kelly and Fiske Data: CFA-CTUM

Trait Method

Factor Factor

Unique SMC

T1M1 .857* -.023 .264* .736

T2M1 .827* .090 .305* .694

T3M1 .560* .712* .184* .817

T4M1 .933* .201 .087* .913

T5M1 695* .214 .492* .518

T1M2 .830* .137 .297* .704

T2M2 .696* .320* .454* .563

T3M2 743* .249* .357* .632

T4M2 .185* .642* 547* .449

T5M2 .646* .365* .428* .562

T1M3 .551* .105 .681* .316

T2M3 .421* .261* 743* .248

T3M3 .419* .295* .755* .258

T4M3 .301* .591* .592* .426

T5M3 .556* .570* .420* .602

Trait factor Correlations

Tl

T2

T3

T4

T5

1.000

.568*

-.368*

.339*

.562*

1.000

-.487*

.547*

.263*

1.000

-.120

-.007

1.000

.411* 1.000

Kelly and Fiske Data: CFA-CTCU

Trait

Factor

unique SMC Unique. Correlations

T1M1 .876* .230* .770 1.00

T2M1 .827* .318* .682 -.161 1.00

T3M1 .584* .663* .340 -.027 .153 1.000

T4M1 .921* .150 .849 -.148 .256 .481* 1.000

T5M1 .690* .541* .468---.041 -.014 .265 .119 1.000

T1M2 .827* .338* .669 1.000

T2M2 .705* .550* .475 .062 1.00

T3M2 .704* .467* .515 .170 .111 1.000

T4M2 .188 .956* .036 .141 .318* .229* 1.000

T5M2 .626* 585* .401 .221 .199 .245 .304* 1.000

T1M3 .556* .696* .308 1.000

T2M3 .410* .815* .171 .137 1.000

T3M3 .420* .842* .173 .012 -.038 1.000

T4M3 .300* .943* .087 .099 .223* .171 1.000

T5M3 .558* .733* .298 .031 .169 .277* .392* 1.000

Trait factor Correlations

Tl

T2

T3

T4

T5

1.000

.591*

-.391*

.354*

554*

1.000

-.475*

.522*

.289*

1.000

-.134

-.056

1.000

.425* 1.000
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Appendix 2 (continued)

Parameter Estimates From the Best Fitting Confirmatory Factor Analysis (CFA) Models

Ireland Data: CFA-CTCU

Trait

Factor

unique. SMC Unique. Correlations

T1M1 .861* .252* .747 1.000*

T2M1 .835* .290* .706 .600* 1.000

T3M1 .835* .291* .706 .588* .596* 1.000

T4M1 .843* .274* .722 .423* .490* .694* 1.000

T5M1 .868* .238* .760 473* 454* .687* .738* 1.000

T1M2 .801* .360* .640 1.000

T2M2 .799* .372* .632 .570* 1.000

T3M2 .853* .274* .727 .320* .411* 1.000

T4M2 .801* .367* .636 475* .611* .551* 1.000

T5M2 .819* .338* .665 .617* .646 .505* .741* 1.000

T1M3 .728* .478* .526 1.000

T2M3 .690* .517* .480 .362* 1.000

T3M3 739* .464* .541 .360* .502* 1.000

T4M3 .616* .632* .375 .153* 595* .623* 1.000

T5M3 .713* .498* .505 .456* .499* .761* .618* 1.000

Trait Factor Correlations

Tl 1.000

T2 .948* 1.000

T3 .960* .948* 1.000

T4 .928* .932* .963* 1.000

T5 .964* .978* .991* .960* 1.000

Ireland Data: CFA-CTUM

Trait Method Unique SMC

Factor Factor

T1M1 .864* .329* .138* .861

T2M1 .836* .363* .160* .838

T3M1 837* .468* .072* .928

T4M1 .837* 434* .098* .901

T5M1 .860* .407* .086* .914

T1M2 .801* .403* .201* .800

T2M2 .807* 454* .153* .849

T3M2 .862* .288* .179* .822

T4M2 .819* .470* .124* .878

T5M2 .128* .508* .069* .932

T1M3 .713* .297* .400* .599

T2M3 .683* .449* .322* .675

T3M3 735* .588* .122* .879

T4M3 .608* .586* .295* .707

T5M3 .714* .616* .114* .887

Trait factor correlations

Tl

T2

T3

T4

T5

1.000

.965*

.958*

.912*

.964*

1.000

.942*

.929*

.964*

1.000*

.967*

.9C8*

1.000

.969* 1.000

Note. CFA results are summarized for the best models for each data set. Each measured variable is

a trait-method unit. T1M1, for example, is trait 1 measured by method 1. The squared multlple

correlations (SMC) are an estimate of the communality for each measured variable.

* p < .05



Mulitrait-multimethod Data 42

Appendix 3

Parmeter Estimates For the Covariance Components Analysis (CCA) Models

Byrne Dota

Variance/covariances

GEN 1.000

TC1 0 .074*

TC2 0 .024 .589*

MC1 0 0 0 .022*

MC1 0 0 0 .017* .069*

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3113 T1M3 T2M2 T3M3

.730 .601 .881 .565 .831 .905 .849 .722 .826

Lawler data

Variance/covariances

GEN 1.000

TC 1 0 .102*

TC2 0 .016 .246*

MC1 0 0 0 .282*

MC1 0 0 0 .271* 579*

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

.810 .626 .672 .821 .618 .664 .563 .270 .399

YIT data

Variance/covariances

GEN 1.000

TC1 0 .205*

TC2 0 -.070* .661*

TC3 0 -.062* -.027 .380*

TC4 0 -.036* .037 .147* .365*

MC1 0 0 0 0 0 .105*

MC2 0 0 0 0 0 .020* .051*

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

.535 .516 .438 .455 .507 .704 .653 .712 .586 .709 .710 .446 .571 .504 .640

Kelly and Fiske data (T3 negatively oriented)

Variance/covariances

GEN 1.0

TC1 .0 .670*

TC2 .0 .387* 793*

TC3 .0 -.639* -.821* 1.2844*

TC4 .0 -.087 .107 .020 .169*

MC1 .0 0 0 0 0 .126*

MC: .0 0 0 0 0 .100* .360*

Squa,ed mul'iple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M. T2M1 T3M1 T4M1 T5M1

.735 .667 .370 .589 .467 .738 .535 .591 .166 .566 .263 .276 .201 .449 .648

4 t!
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Appendix 3 (continued)

Parameter Estimates For the Covariance Components Anal,sis (CCA) Models

Kelly and Fiske data (T3 reflected so as to be positively oriented)

Variance/covariances

GEN 1.0

TC1

TC2

TC3

TC4

MC1

MC2

.0

.0

.0

.0

.0

.0

.142*

-.008

-.045

-.067*

0

0

.101*

.006

.086*

0

0

.790*

.094

0

0

.204*

0

0

.022

.046 .115*

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T141 T2M1 T3M1 TAM1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

.704 .692 .278 .519 .419 .727 .461 .678 .069 .473 .398 .311 .107 .228 .310

Ireland data: CCA (fully diagonal since block diagonal ill defined)

Variance/covariances

GEN 1.000

TC1 0 .013*

TC2 0 .000 .013*

TC3 0 .000 0 .002

TC4 0 .000 0 .000 .003

4C1 0 .000 0 .000 0 .089*.

MC2 0 .000 0 .000 0 .000 .139*

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

.855 .841 .919 .873 .917 .799 .853 .792 .854 .927 .594 .689 .877 .686 .885

Note. CCA results are summarized as the variance/covariance matrix for the general (GEN) contrast

factor, the trait contrast (TC1, TC2,..) factors, and the method contrast (MC1, MC2, ...) factors.

The squared multiple correlations (SMC) are an estimate of the communality for each measured

variable.

* p < .05

4 7
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Appendix 4

Parameter Estimates For the Composite Direct Product (CDP) Models

Byrne Data: CDP Model

Trait Corr Meth Corrs

Tl 1 M1 1

T2 .683* 1 M2 .955* 1

T3 .600* .181* 1 M3 .851* .814* 1

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

.756 .610 .889 .586 .867 .933 .856 .851 (1.0)

Byrne Data: CDP-CE Model (because CDP solution was improper)

Trait Corr Method Corrs

Tl 1 M1 1

T2 .694* 1 M2 .879* 1

T3 .604* .161* 1 M3 .853* .840* 1

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

. 665 .700 .896 .673 .707 .900 .850 .867 .961

Lawler data: CDP Model

Trait correlations Method correlations

Tl 1.000 M1 1.000

T2 .687* 1.000 M2 717* 1.000

T3 .665* .520* 1.000 M3 .207* .190* 1.000

Squared multiple correlations

T111 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

. 878 .710 .782 .902 .724 .748 .802 .454 .541

YIT data: CDP Model

t Correlations Method Correlations

1.000 M1 1.000

.123* 1.000 M2 .685* 1

.272* .026 1.000 M3 579* .782* 1
30* .086* .471* 1 .000

.425* .036 .072* .179* 1 .000

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

. 728 .999 .779 .709 .830 .757 .699 .763 .631 .768 .867 .687 .792 .644 .865

Kelly and Fiske Data: CDP Model

Trait correlations Method correlations

Tl 1.000 M1 1.000

T2 .442* 1.000 M2 .796* 1.000

T3 -.171 -.212* 1.000 M3 579* .529* 1.000

T4 .295* .636* .253* 1.000

T5 .404* .299* .309* .589* 1.000

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

. 830 .724 .398 .667 .535 .830 .604 .787 .213 .710 .511 .426 .465 .515 .747

Ireland data: CDP model

Trait correlations Method correlations

Tl 1.00 M1 1.000

T2 .952* 1.000 M2 .767* 1.000

T3 935* .932* 1.000 M3 C73* .652* 1.00

T4 .877* .917* .964* 1.000

T5 .945* .956* .989* .970* 1.000

Squared multiple correlations

T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1 T1M1 T2M1 T3M1 T4M1 T5M1

.881 .851 .920 .913 .902 .814 .860 .798 .892 .914 .603 .700 .885 .719 .878

Note. Each measured variable is a trait-method unit. T1M1, for example, is trait 1 measured by

method 1. The squared multiple correlations (SMC) are an estimate of the communality for each

measured variable.

* p < .05
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Appendix 5

Simulated Data Used to Compare CFA and CDP Models

CFA-CTUM Model Used

To Generate the Data

TFL MFL TD

T1M1 .9 .1 .18

T2M1 .8 .1 .35

T3M1 .3 .3 .82

T1M2 .8 .2 .32

T2M2 .8 .2 .32

T3M2 .3 .3 .82

T1M3 .7 .1 .50

T2M3 .7 .2 .47

T3M3 .5 .3 .66

Trait factor Correlations

Tl

T2

T3

1.0

.6

.1

1.0

.1 1.0

Artificial MTMM Matrix

tlml

t2m1

t3m1

t1m2

t2m2

t3m2

t1m3

t2m3

t3m3

1.000

.442

.057

.720

.432

.027

.630

.378

.045

1.000

.054

.384

.640

.024

.336

.560

.040

1.000

.024

.024

.090

.021

.021

.150

1.000

.424

.084

.560

.336

.040

1.000

.084

.336

.560

.040

1.000

.021

.021

.150

1.000

.314

.065

1.000

.095 1.000

Artificial data: CDP Model

Trait Correlations Method Correlations

Tl

T2

T3

1.000

.597

.160

1.000

.179 1.000

M1

M2

M3

1.000

.934

.943

1.000

.904 1.000

Squared multiple correlations

T1M1 T2M1 T3M1 T1M2 T2M2 T3M3 T1M3 T2M2 T3M3

.832 .656 .098 .713 .714 .117 .536 .538 .246

Note. The CFA-CTUM solution was used to generate the MTMM matrix that was then evaluated with the

CDP model. Even though the true trait variances for Tl and T2 differed substantially from T3,

apparently violating an assumption of the CDP model, the CDP model fit the data very well (X2 (21)

= 11.15 for a hypothetical N=500).
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